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1. Motivation



Statistical methods play a determinant role in infectious disease epidemiology, as they provide the mathematical 

apparatus to bridge the gap between observed data and estimates of key epidemiologic quantities.

In this talk, the focus is on:

1. The time-varying reproduction number.                 Average number of secondary cases generated by an   

infectious individual at time   . A key parameter for:

 

 

2.    The incubation period.                Time between infection and symptom onset. A key quantity to:

Motivation 

• Monitoring transmissibility and infectiousness of diseases during outbreaks.

• Parameterizing models to reach effective control and prevention measures.

• Quantifying the probability of a pathogen’s persistence upon arrival in a new location.

• Globally gauge the epidemic potential of an infectious disease.

• Help planning optimal quarantine periods.

• Assess the transmission potential of an infectious disease through the reproduction number.

• Quantify the size of an epidemic.
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• Frequentist inferential approach dominated since the birth of epidemiology sparked by Daniel Bernoulli.

• Bayesian methods in “epi” models become increasingly popular:

• Inclusion of prior information.

• Uncertainties governing disease transmission mechanisms.

• High processing power + multi-core architectures → facilitate implementation of MCMC methods.

Motivation

The Bayesian philosophy

Likelihood Prior Posterior

Bayes’ theorem
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• Laplacian-P-splines (LPS) combine Laplace approximations and penalized B-splines or P-splines (Eilers 

and Marx, 1996; Lang and Brezger, 2004) in a unified framework.

• Laplace approximations to posterior distributions are essentially Gaussian approximations.

• P-splines allow for flexible estimation of functional components.

• Originally developed in the class of survival models and generalized additive models:

• Gressani, O. and Lambert, P. (2018). Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines. 
Computational Statistics and Data Analysis, 124, 151-167.

• Gressani, O. and Lambert, P. (2021). Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines. Computational 
Statistics and Data Analysis, 154, 107088.

• Gressani, O., Faes, C. and Hens, N. (2022). Laplacian-P-splines for Bayesian inference in the mixture cure model. Statistics in Medicine, 41(14), 2602-2626.

• Recent extensions to epidemic models (→ EpiLPS):

• Gressani, O., Wallinga, J., Althaus, C., Hens, N. and Faes, C. (2022). EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying 

reproduction number. PLoS Computational Biology, 18(10): e1010618.

• Gressani, O., Faes, C. and Hens, N. (2023). An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported 

epidemic data. Biometrical Journal, 65(6): 2200024.

• Gressani, O., Torneri, A., Hens, N. and Faes, C. (2023). Flexible Bayesian estimation of incubation times. MedRxiv preprint. 
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2. Laplace approximations and P-splines 

in a Bayesian context



The Laplace approximation (1/3)

Born during Enlightenment period in Laplace’s Mémoire sur la probabilité des causes par les événements (1774).

Mostly silent in statistical literature until its revival by Tierney and Kadane (1986) and INLA (Rue et al. 2009).

Consider a posterior distribution               with                               and observables     .   

Second-order Taylor expansion of                                    around              :  

Around the modal value      of              , we have                                                                        . 
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The Laplace approximation (2/3)

In practice, the Laplace approximation is sequentially implemented (e.g. Newton-Raphson, Levenberg-Marquardt).

Beware numerical pitfalls/convergence issues when locating the mode     :

• Step-halving.

• Ascent direction.

• Positive definiteness of negative Hessian.

• Sensitivity to initial values.

Accuracy? Typically OK in “medium/large” samples due to the Bernstein-von Mises theorem and the Gaussian 

Markov field prior on latent variables.

If needed, use asymmetry corrections, see e.g.:

 Lambert, P., Gressani, O. (2023). Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models. Statistical

 Modelling, 23(5-6):409-423.

Need to compute analytical gradient/Hessian only once!

Much faster than MCMC.
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The Laplace approximation (3/3)

Assume a bivariate-t distribution                               with             degrees of freedom.

Gradient                                                                   and Hessian entries:
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B-splines and Bayesian P-splines

B-splines

• B-splines are used in a regression context to model smooth 

functional components.

• A B-spline of degree d:

▪ Polynomial pieces joining together at d inner knots.

▪ Each piece is a polynomial of degree d.

▪ + on domain spanned by d + 2 knots.

▪ Below: a cubic B-spline basis in [0, 1].

P-splines

• Eilers & Marx (1996): Use a large number 

of B-splines and balance the flexibility of 

the fit by a roughness penalty based on 

finite difference of contiguous B-spline 

coefficients.

• Lang & Brezger (2004): Bayesian version. 

Penalty is translated into a Gaussian prior 

for the B-spline coefficients.
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The recipe of LPS

Latent Gaussian models: a vector of latent variables     (Gaussian prior                ) and hyperparameters    .

Objective is to approximate the joint posterior of the latent vector: 

1. Laplace approximation to the conditional posterior:

2. Approximation of the hyperparameter vector:

3. Approximation of the posterior latent vector (grid-based, Maximum a posteriori MAP):
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3. Estimation of the time-varying 

reproduction number



Modeling the time-varying reproduction number

Average number of secondary cases generated by an infectious individual at time   .

Gostic et al. (2020) give an elegant overview of existing methods and recommend the EpiEstim methodology 

(Cori et al., 2013) for real-time estimation of      .

EpiEstim is a Bayesian approach assuming a Gamma distributed prior on the reproduction number with a 

Poisson likelihood on case counts (conjugacy eases generation of Markov chains).

Other recent tools for estimating      :

• EpiNow2 package (Abbott et al., 2020).

• EpiFilter (Parag, 2021) recursive Bayesian smoother (Kalman filter).

• Pircalabelu (2021) builds an approach based on truncated polynomials and radial basis splines.

 
EpiLPS → a new Bayesian approach (Epidemiological modeling with Laplacian-P-Splines).
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Let                                        denote the number of cases by reporting date.

Negative binomial assumption for      → accounts for overdispersion.

Gaussian prior on B-spline coeffs. and robust penalty priors (Jullion and Lambert, 2007).

Hyperparameter vector is                     . 

EpiLPS has a two-step engine; in step (1) smooth case counts                                   and in step (2) plug the 

latter in a renewal equation model for      . 
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Smoothing case counts

The estimated mean number of cases at a given time point    is obtained with Laplacian-P-splines.

First, write the log-likelihood of the model:

Gradient and Hessian of the (log) conditional posterior of the spline components are obtained analytically:

                                                                                                                             .Newton-Raphson + MAP Estimator for B-spline coeffs.
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Renewal equation model

Serial interval (SI) =def the time elapsed between the onset of symptoms in an infector and the onset of symptoms in 

the secondary cases generated by that infector.

Denote by                                    the (discrete) serial interval distribution, assumed known here.

Let                                be the probability that the SI is equal to s day(s) and assume                  and                                               .

Use renewal equation model                                          , rearrange and plug-in: 

Using the delta method, we show that 

This is an entirely sampling-free methodology to obtain point and set estimates of       .  
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A Langevinized Gibbs sampler 18/30
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Computational time and real data application

Computational time

• EpiLPS relies on efficient algorithms and low computational cost is 
required to estimate the reproduction number.

• Source code:
▪ Modular structure.
▪ Computational intensive routines coded in C++.
▪ Integration via the Rcpp package.
▪ LPSMAP faster than LPSMALA.

Application to SARS-CoV-2 data

• LPSMAP with K = 30 B-splines an second-

order penalty.

• Estimated reproduction number from April 2020 

to October 2021 for BEL, DEN, POR and FRA.
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4. Estimation of the incubation 

distribution



Modeling the incubation distribution

The incubation period.                Time between infection and symptom onset.

Important contributions in modeling approaches dealing with interval-censored data:

▪  Peto (1973): Maximum likelihood with constrained Newton-Raphson.

▪  Turnbull (1976): EM algorithm to build a non-parametric estimate of the cdf under interval censoring.

▪  Sinha and Dey (1997): Review of semi-parametric Bayesian methods for interval-censored survival data.

More directly related to infectious disease epidemiology:

▪ Reich et al. (2009): Frequentist context to estimate the incubation distribution through AFT models.

▪ Backer et al. (2020) and Miura et al. (2022): Bayesian parametric approaches to estimate the incubation   
period of COVID-19 and Mpox, respectively.

▪ Kreiss and Van Keilegom (2022): Semi-parametric method via Laguerre polynomials.
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▪ Observed exposure interval for individual    denoted by                          .

▪ Model in continuous time with                                                 .

▪ Data at resolution of individual    is                             and for an information set of size    ,                   .     

Data

Figure. Relation between exposure window, incubation bounds and symptom onset time.
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Model

Incubation time     → non-negative (continuous) random variable with:

▪ probability density function        , hazard function        and survival function        .

Based on data     , we propose a semi-parametric two-component mixture density estimator for         at          :

        with                    .

▪ The density estimator             is based on the single interval-censored (IC) data.

▪ The density estimator             uses a histogram smoother (HS) based on data from midpoint imputation.
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Real data applications (MERS and Mpox)

Mean incubation (95% CI) 95th percentile (95% CI)

Cauchemez et al. (2014) 5.5 (3.6-10.2) 10.2 (NA)

LPS 5.3 (4.5-6.2) 10.1 (9.2-12.1)

Miura et al. (2022) 9.0 (6.6-10.9) 17.3 (13.0-29.0)

LPS 8.9 (7.9-9.9) 16.6 (14.7-19.1)
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5. Conclusion



Conclusion

Take home message

• Laplacian-P-splines (LPS) combine Laplace approximations to selected posterior distributions and 
Bayesian P-splines for fast and flexible inference in the class of latent Gaussian models.

• Attractive tool in infectious disease modeling (estimation of      , estimation of the reproduction number 
under misreported data,...)

• LPS can also be used for nowcasting:

• Sumalinab, B. Gressani, O., Hens, N. and Faes, C. (2023). Bayesian nowcasting with Laplacian-P-
splines. MedRxiv preprint.

LPS vs INLA (Rue et al., 2009)

• INLA  → marginal posterior distributions / LPS → joint posterior distributions.

• Algorithmic structure differs totally.

• LPS → analytical gradient/Hessian available, while INLA relies on numerical differentiation.

• LPS is exclusively built around P-splines smoothers (at least for the moment).
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Conclusion

In “epi” models

• Fast and flexible Bayesian approach for estimating the time-varying reproduction number based on daily 
case count data and the incubation period distribution based on coarse data.

• Laplace approximation plays a central role → allows for sampling-free schemes + more efficient MCMC.

• Methodology is nested in the EpiLPS ecosystem https://epilps.com/. 

• Routines already available in EpiLPS package (CRAN).

• Efficient algorithms and use of C++ (via Rcpp) improves speed.
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