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Marie Curie, Discours sur l’avenir

de la culture, Madrid 1933.1
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un rôle plus ou moins important dans le développement de ce doctorat.
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Introduction

Uncertainty and random events are two unavoidable facets of our daily

life. Whether one is interested in the laws of physics governing the uni-

verse, economic decision making, biology or politics, the concept of a

random phenomenon serves as a crucial building block for establishing

a theory. Statistical science provides useful tools to understand and

formalize randomness by means of probabilistic models. The scientific

method in statistics can be implemented by following two philosophically

different paths. From the frequentist or classical perspective, probabil-

ity is defined as a relative frequency resulting from a theoretical infinite

number of iterations of a random experience. In the present work, we

take the other path based on the Bayesian paradigm in which probability

has a subjective interpretation and is perceived as a degree of belief.

The contribution of this thesis is built upon the combination of Laplace’s

method and penalized regression splines. Laplace approximations to se-

lected posterior distributions enables to bypass Markov chain Monte

Carlo (MCMC) methods and yields accurate inferences at a low compu-

tational budget in a large class of models. Penalized regression splines is

a popular and well established technique for curve fitting and allows flex-

ible and smooth estimation of unknown regression functions. We build

a novel approach that combines Laplace’s method and penalized splines

for fast approximate Bayesian inference in latent Gaussian models. The

resulting “Laplace-P-spline” methodology (LPS) is developed within the

framework of survival analysis and (generalized) additive models. A soft-

ware package is developed in the R language and made available in a

public repository. The thesis is organized in six chapters summarized

below.
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2 INTRODUCTION

Chapter 1

The objective of this chapter is to provide enough background material

to familiarize the reader with Laplace approximations and penalized

regression splines, the two fundamental concepts of the thesis. First,

emphasis is placed on Laplace’s method and its role as a posterior ap-

proximation scheme in a Bayesian setting. In addition to illustrative

examples of posterior approximations, we also discuss in detail the im-

portance of nested approximations in the Laplace-P-spline theory. Sec-

ond, we provide the mathematical formulation of B-splines and their pe-

nalized version in both frequentist and Bayesian settings. The chapter

ends by presenting a way of unifying Laplace’s method and penalized

splines in a Cox proportional hazards model which serves as smooth

preliminary material to the next chapter. A small simulation setting

highlights the computational benefits of our approach and encourages

further extension of the Laplace-P-spline methodology.

Chapter 2

The chapter borrows its content from the paper: Fast Bayesian in-

ference using Laplace approximations in a flexible promotion

time cure model based on P-splines1 published in Computational

Statistics and Data Analysis, August 2018, Volume 124, Pages 151-

167 (Gressani and Lambert, 2018). The article is accessible at https:

//doi.org/10.1016/j.csda.2018.02.007. We develop a sampling-

free approximate Bayesian inference methodology for fast inference in

a promotion time cure model where an unknown fraction of cured sub-

jects will never experience the event of interest. The LPS promotion

time model goes beyond univariate marginal analysis by providing ap-

proximate joint posteriors for the spline and regression parameters and

pointwise credible intervals even for relatively complicated functions of

latent variables. The approximated multivariate posterior of the spline

and regression coefficients is expressed as a finite mixture of Gaussian

densities for which the mean and covariance matrix are available. A

simulation study shows that our method performs well in different cure

and censoring scenarios. The chapter ends with two real applications on

malignant melanoma and oropharynx carcinoma data.

1©2018. Chapter 2 of this thesis is made available under the CC-BY-NC-ND 4.0

license https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.csda.2018.02.007
https://doi.org/10.1016/j.csda.2018.02.007
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Chapter 3

The third chapter is inspired from the discussion paper: The Laplace-

P-spline methodology for fast approximate Bayesian inference

in additive partial linear models (Gressani and Lambert, 2020a).

The aim is to develop the LPS methodology in the class of additive

models, where the limiting assumption of a linear regression function is

replaced by a sum of smooth functions of individual covariates. Analytic

formulas for the gradient and Hessian of the posterior penalty vector are

derived and used to construct an efficient algorithm for exploring the

penalty space. When the number of smooth functions in the model is

small to moderate, exploration of the posterior penalty domain relies on

a moment-matching method based on the skew-normal family of distri-

butions. In larger dimensions optimal smoothing is determined by the

posterior mode of the penalty vector. We also address the construction

of approximate quantile-based credible intervals for the vector of spline

and regression parameters and credible intervals for smooth functions.

The performance of our approach is assessed using a simulation study.

Chapter 4

The fourth chapter is articulated around ideas found in the article:

Laplace approximations for fast Bayesian inference in general-

ized additive models based on P-splines 2 published in Computa-

tional Statistics and Data Analysis, February 2021, Volume 154 (Gres-

sani and Lambert, 2021) accessible at https://doi.org/10.1016/j.

csda.2020.107088. It is a generalization of Chapter 3 where Bayesian

P-splines and Laplace approximations are coupled for inference in gen-

eralized additive models (GAMs). Our LPS-GAM is endowed with an-

alytical forms for the gradient and Hessian of the posterior penalty vec-

tor and, hence, does not require numerical differentiation for inference.

The main strength of our approach resides in the fast algorithm to esti-

mate the model and the ability to accommodate any number of smooth

terms. Furthermore, simulation results reveal good statistical perfo-

mance and proves that our methodology is competitive against a widely

used benchmark method. Finally, the LPS method is illustrated on two

real datasets.

2©2020. Chapter 4 of this thesis is made available under the CC-BY-NC-ND 4.0

license https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.csda.2020.107088
https://doi.org/10.1016/j.csda.2020.107088
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Chapter 5

This chapter is dedicated to the blapsr package (Gressani and Lam-

bert, 2020b) written in the R language, a software created during the

PhD project that implements Bayesian approximate inference in sur-

vival models and (generalized) additive models based on the Laplace-P-

spline methodology presented in the previous chapters. A stable version

of the package is on CRAN (https://cran.r-project.org/package=

blapsr) and an in-development version can be found on GitHub (https:

//github.com/oswaldogressani/blapsr). A dedicated website is also

available at https://www.blapsr-project.org/. Four main routines

are presented that can be used to fit the classic Cox model and the

promotion time cure model (for right censored survival data) as well as

additive partial linear models and generalized additive models. The R

functions are illustrated on simulated data and on real data examples.

Chapter 6

The thesis concludes with a chapter that aims at giving the reader a

broad perspective of the LPS methodology with additional complemen-

tary ideas. In particular, a general recipe explaining the key steps to

implement LPS in a generic Bayesian setting is presented. The strengths

and weaknesses of LPS are also summarized. Finally, several future re-

search directions are proposed that open up new horizons for Laplace-

P-splines.
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CHAPTER 1
Laplace approximations and
P-splines

1.1 Motivation

The present chapter aims at providing the reader with a broad con-

ception of the methodological developments and challenges addressed in

this thesis. The purpose is to draw the foundational aspects and prin-

cipal ideas involved in subsequent chapters, as well as an outline of the

difficulties to be surmounted by emphasizing on the benefits and limi-

tations of the proposed methodology. We begin by explaining the role

and use of the Laplace approximation scheme in a Bayesian framework

and describe how it can be used to obtain a rapid and sampling-free

tool for approximate inference in a general class of models. Penalized

regression splines are another important facet of the thesis. Particular

focus is placed on B-splines which are used to approximate an unknown

regression function by specifying a linear combination of a chosen ba-

sis with a difference penalty on adjacent spline coefficients to prevent

overfitting.

We propose to exploit the synergy between Laplace’s method for fast

posterior approximations and P-splines for flexible nonparametric mod-

eling, giving birth to the “Laplace-P-spline” (LPS) model. The chapter

5



6 LAPLACE APPROXIMATIONS AND P-SPLINES

is structured as follows. Section 1.2 introduces the Laplace approxima-

tion and its role in a Bayesian framework. In addition, the concept of

nested approximations is presented along with an illustration in a sim-

ple univariate model. Section 1.3 aims at familiarizing the reader with

B-splines and their penalized version, both in a frequentist and Bayesian

setting. In Section 1.4 the central idea of the thesis, namely the unifica-

tion of Laplace’s method and P-splines is presented and illustrated in a

Cox proportional hazards model. Section 1.5 concludes the chapter.

1.2 The Laplace approximation

1.2.1 Historical note

At the forefront of Enlightenment thinkers, the French mathematician

Pierre-Simon de Laplace (1749-1827) is recognized for his influential role

in the development of probability theory and mathematical statistics.

Although it is well known that Laplace contributed to build the theo-

retical background of least squares together with Legendre and Gauss

(Plackett, 1949; Stigler, 1981), the idea that Laplace’s work on inverse

probability was largely responsible for disseminating the Bayesian para-

digm is less widespread in the scientific community. Thus, the Bayesian

method cannot be solely credited to Thomas Bayes, as Hogben (1968,

p. 133) puts it: “The fons et origo of inverse probability is Laplace. For

good or ill, the ideas commonly identified with the name of Bayes are

largely his.”

Among the vast scientific breakthroughs proposed by Laplace, the metho-

dology developed in this thesis is largely based on the so-called Laplacian

method of approximation introduced in his Mémoire sur la probabilité

des causes (Laplace, 1774), see also Laplace (1986, pp. 366-367) for

the English version. In the latter work, Laplace proposes a technique

to approximate integrals whose integrand term has a single sharp peak

(or mode) at a point x0, implying that the entire integral can be well

approximated by integration around a small neighborhood of x0. The

key idea behind Laplace’s method is to implement a Taylor series expan-

sion of the logarithm of the integrand around the mode (Azevedo-Filho

and Shachter, 1994). This expansion will result in a term that shares

similarities with a Gaussian distribution and hence can be integrated

analytically.
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The 1774 seminal work of Laplace served as a building block for other

significant mathematical contributions in the nineteenth century and

his approximation technique had an important impact in a wide vari-

ety of disciplines. The rebirth of Bayesian statistics after the Second

World War, influenced by Leonard Savage in his book The foundations

of Statistics (Savage, 1954), and the advent of computer age statistical

inference triggered a revived interest in Laplace’s method.

The resurrection of Laplace approximations in a Bayesian context is pri-

marily attributed to Lindley (1961) and Mosteller and Wallace (1964),

who use the method to approximate ratios of integrals. Later, Leonard

(1982) proposes to approximate the denominator of a predictive distribu-

tion by using Laplace’s method and Tierney and Kadane (1986) apply

the ideas of Laplace to approximate posterior moments and marginal

densities (see also Tierney et al., 1989).

During the first decade of the twenty-first century, a growing literature

on Laplace approximations emerged along with the idea that it could be

considered a serious challenger to existing Markov chain Monte Carlo

(MCMC) methods, the dominant strategy in Bayesian analysis to char-

acterize posterior distributions and perform statistical inference. These

MCMC techniques are often plagued by several potential issues such as

high posterior correlation between parameters, slow chain convergence,

and foremost a strong computational cost. In an attempt to overcome

the drawbacks inherent to MCMC sampling algorithms, an approximate

Bayesian inference scheme coined Integrated Nested Laplace Approxi-

mations (INLA) has been proposed by Rue et al. (2009) to infer in a

large subclass of structured additive regression models. The main ad-

vantage of this methodology is that accurate approximations of posterior

marginals can be computed at a low computational budget.

1.2.2 Laplace approximation to the posterior

In the Bayesian paradigm, model parameters are treated as random vari-

ables and probability statements used to quantify parameter uncertainty

should be interpreted as a degree of belief. Before data is collected, a

subjective belief on unknown parameter values is formalized into a prior.

After gathering the data, Bayes’ theorem is used to update the initial

beliefs by coupling the prior and the observed data to obtain a posterior
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distribution. Let D denote the observed data and θ a scalar parameter

of interest. Bayes’ rule allows to write the posterior density as:

p(θ|D) =
p(D|θ)p(θ)
p(D)

,

and by omitting the normalizing constant p(D) =
∫
p(D|θ)p(θ)dθ, usu-

ally called the evidence or marginal likelihood, we can write p(θ|D) ∝
p(D|θ)p(θ), i.e. the posterior is proportional to the likelihood p(D|θ)
times the prior p(θ). In most situations, the posterior is complicated

and hard to handle analytically. The ideas of Laplace can be used to

approximate a complex posterior by computing a second-order Taylor

expansion of the log-posterior, log p(θ|D), around its posterior mode θ̂:

log p(θ|D) ≈ log p(θ̂|D) +
∂ log p(θ|D)

∂θ

∣∣∣∣
θ=θ̂

(θ − θ̂)

+
1

2

∂2 log p(θ|D)

∂θ2

∣∣∣∣
θ=θ̂

(θ − θ̂)2.

Note that the first derivative of the log-posterior evaluated at the mode

is equal to zero and can thus be discarded yielding:

log p(θ|D) ≈ log p(θ̂|D)− τ

2
(θ − θ̂)2, (1.1)

where τ = −(∂2 log p(θ|D)/∂θ2)|θ=θ̂. Recall that the logarithm of a

Gaussian density for θ with mean µ and variance σ2 is given by:

C − 1

2σ2
(θ − µ)2, (1.2)

where C is a normalization constant ensuring that the Gaussian density

integrates to one. From (1.2), one recognizes that (1.1) is the Laplace

approximation to p(θ|D) with mean µ = θ̂ and variance equal to the

inverse of the negative of the curvature of the posterior at the mode, i.e.

σ2 = τ−1.

To illustrate Laplace’s method, assume that the posterior to be approx-

imated follows a Maxwell-Boltzmann distribution (see Papoulis and Pil-

lai, 2002, p. 26 and p. 149), a well-known density in the kinetic theory

of gases given by:



1.2. THE LAPLACE APPROXIMATION 9

p(θ|D) =





√
2
π

θ2 exp
(
− θ2

2a2

)
a3

for θ ≥ 0

0 otherwise,

with a > 0 and mode θ̂ =
√
2a. The log-posterior and its first and

second derivatives are:

log p(θ|D) =
1

2
log

(
2

π

)
− log(a3) + 2 log(θ)−

(
θ2

2a2

)
,

∂ log p(θ|D)

∂θ
=

2

θ
− θ

a2
,

∂2 log p(θ|D)

∂θ2
= −

(
2

θ2
+

1

a2

)
.

Accordingly, the Laplace approximation to the posterior is a Gaussian

with mean θ̂ and variance given by
(
(2/θ̂2) + (1/a2)

)−1
= a2/2.

Laplace’s method has its limitations and is not appropriate when the

posterior probability distribution is not tightly concentrated around the

mode. Consider for instance that the posterior has a Kumaraswamy

distribution (see Michalowicz et al., 2013, p. 99), characterized by the

following probability density function:

p(θ|D) =

{
abθ(a−1)(1− θa)(b−1) for 0 ≤ θ ≤ 1

0 otherwise,

with shape parameters a > 0 and b > 0. The mode is known to be

θ̂ = ((a − 1)/(ab − 1))(1/a). The log-posterior and the first and second

derivatives are:

log p(θ|D) = log(a) + log(b) + (a− 1) log(θ) + (b− 1) log(1− θa),

∂ log p(θ|D)

∂θ
=

a− 1

θ
− a(b− 1)

θ(a−1)

1− θa
,

∂2 log p(θ|D)

∂θ2
= −a− 1

θ2
− a(b− 1)

(a− 1)θ(a−2)(1− θa) + aθ2(a−1)

(1− θa)2
.
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The Laplace approximation to the posterior will be a Gaussian centered

around θ̂ with variance equal to (−∂2 log p(θ|D)/∂θ2)−1 evaluated at

θ̂. Figure 1.1 illustrates the Laplace approximation in the Maxwell-

Boltzmann and Kumaraswamy scenarios. In the left panel, Laplace’s

method works well as the target to be approximated has most of the

posterior mass concentrated around the mode. In the right panel a

Gaussian approximation is less appropriate.
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Figure 1.1: Laplace approximation (dashed curve) of the Maxwell-

Boltzmann distribution (left) with a = 3 and of the Kumaraswamy

distribution (right) with a = 2 and b = 2.

1.2.3 Ideas behind nested approximations

The Laplace approximation scheme can be used to explain the elegant

ideas behind INLA. Assume for simplicity that a Bayesian model in-

corporates a single one-dimensional parameter θ for which we seek the

posterior distribution. Furthermore, let η be a nuisance, i.e. a parame-

ter playing a crucial role in the modeling process but for which we have

no direct interest. The posterior of θ can be obtained by solving the

following integral:

p(θ|D) =

∫
p(θ, η|D) dη

=

∫
p(θ|η,D) p(η|D) dη. (1.3)

Laplace’s method is used to approximate the conditional posterior in

the above integrand p(θ|η,D) by p̃G(θ|η,D) and the latter Gaussian
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expression is, in turn, nested in the approximating candidate for the

posterior of the hyperparameter:

p̃(η|D) =
p(θ, η|D)

p̃G(θ|η,D)

∣∣∣∣
θ=θ̂(η)

,

where θ̂(η) is the posterior mode of the conditional p(θ|η,D) and de-

pends on η. After an appropriate choice of quadrature points
{
η(m)

}

in the domain of the nuisance posterior, (1.3) can be approximated by

numerical integration resulting in the following expression which is ex-

clusively a function of θ:

p̃(θ|D) =
∑

m

p̃G(θ|η(m),D) p̃(η(m)|D) ∆m,

with quadrature weight ∆m. Once the above expression is computed,

desired posterior moments and Bayesian credible intervals can be easily

obtained as the posterior is fully characterized.

This nested approximation procedure, although simple at first sight

comes with two major challenges. First, the Laplace approximation to

the conditional posterior p(θ|η,D) requires to compute a second-order

Taylor expansion of an expression that may have a certain degree of com-

plexity. Hence, obtaining the gradient and Hessian usually requires an

analytical effort. Second, a strategy has to be implemented to efficiently

explore the approximated nuisance posterior. This entails among others,

finding the posterior mode via an algorithm and choose an appropriate

approach to select the points in the domain that captures most of the

posterior mass.

1.2.4 Illustration of nested approximations

To show how nested approximations can be used to approximate a pos-

terior p(θ|D), assume that D = (y1, . . . , yn) is a sample of n i.i.d. real-

izations from a Gumbel distribution with unknown location θ ∈ R and

known scale parameter β > 0, i.e. the contribution of the ith observation

to the likelihood L(θ;D) is p(Yi = yi|θ) = (1/β) exp (−zθ − exp(−zθ)),
where zθ = (yi−θ)/β. We impose a Gaussian prior on θ with zero mean

and variance η−1, i.e. p(θ|η) =
√
η/(2π) exp(−ηθ2/2). Also, a Gamma

prior with mean a/b and variance a/b2 is specified on the nuisance η,
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namely p(η) ∝ η(a−1) exp(−bη). The conditional posterior of θ is:

p(θ|η,D) ∝ L(θ;D) p(θ|η)

∝ exp

(
−

n∑

i=1

(
(yi − θ)

β
+ exp

(
−(yi − θ)

β

))
− η

2
θ2

)
,

with log-posterior, first and second derivatives given by:

log p(θ|η,D) =̇ −
n∑

i=1

(
(yi − θ)

β
+ exp

(
−(yi − θ)

β

))
− η

2
θ2,

∂ log p(θ|η,D)

∂θ
=

1

β

(
n−

n∑

i=1

exp

(
−(yi − θ)

β

))
− ηθ,

∂2 log p(θ|η,D)

∂θ2
= −

(
1

β2

n∑

i=1

exp

(
−(yi − θ)

β

)
+ η

)
.

In this example, the mode of the conditional posterior is not analyti-

cally available but can be numerically obtained by solving the equation

n − ηβθ =
∑n

i=1 exp (−(yi − θ)/β) for θ. To obtain the variance of the

Laplace approximation, we simply evaluate (−∂2 log p(θ|η,D)/∂θ2)−1 at

the mode. Note that the mode and the variance will both depend on

the value taken by η, so that the Laplace approximation to the condi-

tional posterior can be written (by abuse of notation) as p̃G(θ|η,D) =

N
(
θ̂(η), σ2(η)

)
. The approximate marginal posterior of the hyperpa-

rameter is computed as follows:

p̃(η|D) ∝ L(θ;D) p(θ|η) p(η)
p̃G(θ|η,D)

∣∣∣∣
θ=θ̂(η)

∝ √
η σ(η) η(a−1) exp(−bη) exp

(
−

n∑

i=1

(
(yi − θ̂(η))

β

+exp

(
−(yi − θ̂(η))

β

))
− η

2
θ̂2(η)

)
.

Figure 1.2, illustrates nested approximations when a sample of size

n = 50 is generated from a Gumbel distribution with location θ = 1.5

and scale β = 5. Parameters related to the Gamma prior are fixed

to a = 2, b = 2. In Figure 1.2 (a), the conditional posterior of θ
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given η = 0.2 is shown together with its corresponding Laplace ap-

proximation. Figure 1.2 (b) shows the approximated hyperparameter

posterior and the vertical ticks along the x-axis correspond to the ar-

bitrary equidistant grid ℵη = {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9}
of size M = 10 chosen to explore the posterior. Defining the weights

ωm =
(
p̃(η(m)|D)∆m

)
/
(∑M

m=1 p̃(η
(m)|D)∆m

)
for m = 1, . . . ,M , with

grid width ∆m = 0.2, the approximate posterior is given by the finite

mixture p̃(θ|D) =
∑M

m=1 ωm p̃G(θ|η(m),D) as illustrated by the solid

curve in Figure 1.2 (d), which results from a sum of weighted Laplace

approximations (dashed) computed for the hyperparameter values in ℵη.

Taking the posterior mean θ̂ =
∑M

m=1 ωmθ̂
(
η(m)

)
as a point estimate

for θ, one obtains θ̂ = 1.445 with quantile-based 95% credible interval

CIθ95% = [0.156; 2.804].
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Figure 1.2: Illustration of nested approximations. Graph (a) corre-

sponds to the conditional posterior of θ (solid) for η = 0.2 and its asso-

ciated Laplace approximation (dashed). Graph (b) shows the approxi-

mated hyperparameter posterior and an arbitrary chosen grid. Graphs

(c) and (d) show the approximated posterior for θ (solid) with the un-

weighted and weighted Laplace approximation terms (dashed) respec-

tively.
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1.3 P-splines

1.3.1 Origin of (B-)splines

The Oxford dictionary of statistics (Upton and Cook, 2014, p. 404), de-

fines a spline as: “A set of polynomials, one for each sub-interval, that

give an approximation to the function f(x), . . . ”. From a less mathe-

matical perspective, the term “spline” is tightly bound to the activity of

draftsmen in the automobile, aircraft and shipbuilding industry. Before

the arrival of modern computer technology, a spline was used as a tool

that consisted of a flexible piece of wood or metal which could be bent

around lead weights (called “ducks” in the jargon) to form a smooth

nonlinear shape around which the draftsmen traced the desired line.

The practical usefulness of splines in a large number of branches trig-

gered a more theoretical interest in the topic and a rich variety of splines

made their appearance in the literature, sometimes referred to as the

zoo of splines (Lyche et al., 2018). A very popular species in this zoo

is the B-spline, as it is endowed with attractive theoretical and compu-

tational properties. B-splines were pioneered by Schoenberg (1946a,b),

even though the latter author suggests that the early emergence of B-

splines can be traced back to the work of Laplace. Schoenberg’s semi-

nal work initiated a flourishing research trend in spline approximation

theory and we refer the reader to Schumaker (2007) for a detailed bib-

liography and further historical notes related to (B-)splines.

1.3.2 Mathematical formulation of B-splines

The building blocks of a B-spline consist of a set of polynomial pieces

assembled together at specific points called knots. The degree of a B-

spline refers to the degree of the polynomial between adjacent knots.

For a B-spline of degree d, there are d + 1 polynomial segments tied

together at d inner knots and the B-spline is positive on a domain made

of d + 2 knots and zero everywhere else. When the knots are equidis-

tant, the B-spline is said to be uniform. For the sake of illustration,

consider a uniform cubic B-spline (d = 3) defined on the following knots

{−1,−0.5, 0, 0.5, 1} with knot distance h = 0.5. The analytic formula

(see e.g. Holmes, 2007, p. 64) is given in (1.4) and represented in Figure

1.3 (a).



1.3. P-SPLINES 15

In this thesis, B-splines will mainly be used in a regression context

to approximate a smooth function. Consider for instance a simple ho-

moscedastic model yi = f(xi) + εi, i = 1, . . . , n with εi ∼ N (0, σ2).

To approximate the unknown function f in an interval [a, b], we use

a (cubic) B-spline basis as shown in Figure 1.3 (b) and model the

regression curve as a linear combination of these basis functions, i.e.

f(x) =
∑K

k=1 θkbk(x), where the spline parameters θk’s are commonly

referred to as the amplitudes of the B-splines and K is the number of

basis functions. Defining the n×K basis matrix B for which the entry at

the intersection of the ith row and kth column is bk(xi), we can use the

least squares criterion to find the amplitude vector that minimizes the

sum of squares θ̂ = argminθ ∥y −Bθ∥2 (∥·∥ is the Euclidean norm) with

solution θ̂ = (B⊤B)−1B⊤y and hence fitted curve f̂(x) =
∑K

k=1 θ̂kbk(x).

b(x) =





1
6h3 (x+ 1)3 if − 1 ≤ x ≤ −0.5
1
6 + 1

2h(x+ 0.5) + 1
2h2 (x+ 0.5)2

− 1
2h3 (x+ 0.5)3 if − 0.5 ≤ x ≤ 0

1
6 − 1

2h(x− 0.5) + 1
2h2 (x− 0.5)2

+ 1
2h3 (x− 0.5)3 if 0 ≤ x ≤ 0.5

− 1
6h3 (x− 1)3 if 0.5 ≤ x ≤ 1

0 otherwise

(1.4)
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Figure 1.3: (a) A uniform cubic B-spline with knots at

{−1,−0.5, 0, 0.5, 1}. (b) Cubic B-spline basis with 15 B-splines.
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1.3.3 The role of the penalty

The main problem with the least squares criterion described in Section

1.3.2 is that the shape of the fitted curve will depend on the chosen

number of B-spline basis functions. If the B-spline basis is too sparse, the

resulting fit will fail to reproduce important patterns of the target, while

overabundance of basis terms will produce a rough curve characterized

by frequent fluctuations.

To overcome this problem, Eilers and Marx (1996) proposed to use the

P-spline approach, which consists in specifying a large number of basis

functions and counterbalance the flexibility of the fit by introducing a

roughness penalty based on finite differences of adjacent B-spline coef-

ficients. Mathematically, the estimated vector of B-spline amplitudes

satisfies θ̂ = argminθ ∥y −Bθ∥2 + λ ∥Drθ∥2, where Dr is the rth order

difference matrix with dimension (K − r) × K and λ is a nonnega-

tive smoothing (or penalty) parameter governing the smoothness of the

fit. Let us define the rth order difference operator as ∆r, such that

∆rθk = ∆r−1θk − ∆r−1θk−1 and ∆1θk = θk − θk−1. Assuming a first-

order penalty, the difference matrix is:

D1 =




−1 1 0 . . . 0

0 −1 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . −1 1



,

and D1θ = (∆1θ2, . . . ,∆
1θK)⊤, such that the penalty can be written in

terms of the difference operator ∥D1θ∥2 =
∑K

j=2(∆
1θj)

2.

The solution to the penalized least squares problem is known to be

θ̂ = (B⊤B+λD⊤
r Dr)

−1B⊤y and the resulting fit is ŷ = Sλy, where Sλ =

B(B⊤B + λD⊤
r Dr)

−1B⊤ is the smoothing matrix. Optimal smoothing

is usually determined by a cross-validation argument, for instance the

value of λ is chosen to be the one that minimizes the generalized cross-

validation criterion GCV(λ) = ∥y − ŷ∥2 /(1−n−1Tr(Sλ))
2, see Ruppert

et al. (2003) p. 117.

To illustrate the role of the penalty assume that the regression function of

the homoscedastic model in Section 1.3.2 is given by f(x) = 2 cos(πx)+
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sin(x3) and that our objective is to estimate the latter in the interval

[−2, 2] by use of K = 40 B-spline basis functions. The sample size is

n = 250 and the standard deviation of the error is fixed at σ = 0.8.

Estimation results are reported in Figure 1.4. In Figure 1.4 (a) the

target regression function (black curve) is estimated without imposing

any penalty and the large number of basis functions results in a complex

fit with wiggly patterns (red curve). Figure 1.4 (b) shows the estimated

target on the same dataset with a third order penalty (r = 3) imposed

on finite differences of neighboring B-spline parameters. The smoothing

parameter that minimizes the GCV criterion is λGCV = 7.344 and the P-

spline fit is smoother, capturing more accurately the nonlinear trajectory

of the target regression curve.

−2 −1 0 1 2

−1
0

−5
0

5

(a)

x

Target

B−spline fit

−2 −1 0 1 2

−1
0

−5
0

5

(b)

x

Target

P−spline fit

Figure 1.4: (a) Approximation of the regression function with K = 40

basis functions without penalty. (b) Penalized approximation of the

target function with K = 40 and smoothing parameter λGCV = 7.344.

1.3.4 Bayesian P-splines

To work with P-splines in a Bayesian setting, Lang and Brezger (2004)

proposed to replace the difference penalty on neighboring B-spline co-

efficients by its stochastic version corresponding to a random walk. For

instance, a first order difference penalty is replaced by a random walk of

first order, namely θk = θk−1+ ε, with ε ∼ N (0, λ−1) and a diffuse prior

on the initial value, i.e. p(θ1) ∝ constant . Using the difference matrix

defined in the previous section, we can write D1θ ∼ NK−1(0, λ
−1IK−1),

where IK−1 is an identity matrix of dimension K − 1. Furthermore,

let us define the penalty matrix P = D⊤
1 D1 + ϵIK , where ϵ is a small
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number (ϵ = 10−6, say) added to the elements in the main diagonal of

the rank deficient matrix D⊤
1 D1 to ensure P is full rank. It follows that

the (proper) prior for the vector of B-spline amplitudes is given by (see

Brezger and Steiner, 2008) p(θ|λ) ∝ exp
(
−0.5λθ⊤Pθ

)
.

For a full Bayesian treatment, a prior is imposed on the smoothing

parameter λ. Following Jullion and Lambert (2007), we use a robust

specification for the roughness penalty prior λ|δ ∼ G(ν/2, (νδ)/2), where
δ ∼ G(aδ, bδ). Fixing ν = 1 and aδ = bδ = 0.5 yields a marginal prior

density for λ corresponding to a Beta-prime distribution (Lambert and

Bremhorst, 2019); see Appendix A1 for details . Finally, Jeffreys’ prior

is imposed on the precision τ = 1/σ2. The Bayesian P-spline model for

the regression setting of Section 1.3.2 is summarized as follows:

(yi|θ, τ) ∼ N (θ⊤b(xi), τ
−1),

(θ|λ, τ) ∼ Ndim(θ)

(
0, (λτP )−1

)
,

(λ|δ) ∼ G(ν/2, (νδ)/2),
δ ∼ G(aδ, bδ),

p(τ) ∝ τ−1,

where b(xi) = (b1(xi), . . . , bK(xi))
⊤ is the ith row of matrix B. Let

Σθ := τ−1(B⊤B + λP )−1, the conditional posterior distributions are

given by (see Appendix A2):

(θ|λ, τ,D) ∼ Ndim(θ)

(
(B⊤B + λP )−1B⊤y,Σθ

)
,

(τ |θ, λ,D) ∼ G
(
0.5(n+K), 0.5(∥y −Bθ∥2 + λθ⊤Pθ)

)
,

(δ|λ,D) ∼ G (0.5ν + aδ, 0.5νλ+ bδ) ,

(λ|θ, τ, δ,D) ∼ G
(
0.5(K + ν), 0.5(τθ⊤Pθ + νδ)

)
.

As full conditional posterior distributions are available, we use the Gibbs

algorithm (Geman and Geman, 1984) to draw samples from the joint

posterior p(θ, τ, δ, λ|D). The Gibbs sampler is given in Algorithm 1.

Let us apply the Bayesian P-spline approach to the simulation setting

of Section 1.3.3, where the aim is to estimate f(x) = 2 cos(πx)+ sin(x3)

in [−2, 2] by using 40 B-spline basis functions and a third order penalty.
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Algorithm 1: Gibbs sampler to draw from p(θ, τ, δ, λ|D)

1: Fix initial values λ(0) and τ (0).

2: for m = 1, . . . ,M do

3: θ(m) ∼ Ndim(θ)

(
(B⊤B + λ(m−1)P )−1B⊤y,Σ

(m−1)
θ

)
.

4: τ (m) ∼ G
(
0.5(n+K), 0.5

(
∥y −Bθ(m)∥2 + λ(m−1)θ(m)⊤Pθ(m)

))
.

5: δ(m) ∼ G
(
0.5ν + aδ, 0.5νλ

(m−1) + bδ
)
.

6: λ(m) ∼ G
(
0.5(K + ν), 0.5

(
τ (m)θ(m)⊤Pθ(m) + νδ(m)

))
.

7: end for

The Gibbs sampler (cf. Algorithm 1) is implemented with M = 25, 000,

a burn-in of length 10, 000 and initial parameters λ(0) = 3 and τ (0) =

((n−1)−1
∑n

i=1(yi− ȳ)2)−1, where ȳ is the sample mean of the response

data. Geweke statistics (Geweke, 1992) are used as a diagnostic tool for

chain convergence.
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Figure 1.5: (a) Trace plot of θ1. (b) Trace plot of θ40. (c) Histogram

of the smoothing parameter λ. (d) Penalized estimation of the target

function with Bayesian P-splines.
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All model parameters have Geweke statistics in the range [−1.96, 1.96],

suggesting that convergence of the chains is reached. Figure 1.5 dis-

plays the trace plots of θ1 and θ40 as well as the histogram of λ after

burn-in and the estimated target regression function with the Bayesian

P-spline approach, where the mean of the posterior sample θ
(m)
j ,m =

1, . . . , 15 000 is used as a point estimate of the B-spline amplitude θj .

1.4 Unifying Laplace’s method and P-splines

This section aims at showing how Laplace approximations can be com-

bined with penalized B-splines for fast approximate Bayesian inference

in the Cox model (Cox, 1972), a popular modeling approach for survival

data. The Cox-LPS methodology presented hereafter is summarized in

the coxlps() routine of the blapsr package (cf. Chapter 5). The ma-

terial presented here also serves as a smooth introduction to the next

chapter devoted to the LPS method in promotion time cure models.

1.4.1 Basic elements of survival analysis

In survival analysis, the primary object of interest is a nonnegative ran-

dom variable T (assumed continuous here) representing the time from

a well-defined origin to the occurrence of an event of interest. In the

context of time-to-event data, the survival time (or failure time) T is

usually characterized by the survival function S(t) = P (T > t), repre-

senting the probability that the event of interest will arise beyond time t

and satisfying S(0) = 1 and S(+∞) = 0. Another important quantity is

the hazard function h(t) = lim∆t→0+ {P (t ≤ T < t+∆t |T ≥ t)/∆t} as

it represents the instantaneous risk of experiencing the event at time t

given that the event did not occur prior to time t. Denoting by f(t) the

probability density function of T and using the definition of conditional

probability, we recover h(t) = f(t)/S(t) = −d logS(t)/dt. The cumula-

tive hazard function is H(t) =
∫ t
0 h(u) du, and since h(t) = −S′(t)/S(t),

we also have H(t) = −
∫ t
0 S

′(u)/S(u) du = −[logS(u)|t0] = − logS(t).

Classic statistical approaches cannot be used to analyze time-to-event

data because of a special feature called censoring. When a survival time

of a unit under study is censored, it means that the event of interest

has not been observed for that unit. A potential reason may be that the

unit is lost to follow-up or experiences an event unrelated to the event of

interest and is therefore outside the risk set. Let C be a random censor-
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ing time. Under right censoring, we observe the smallest between T and

C > 0, i.e. Tobs = min(T,C) and an indicator function δ̃ = I(T ≤ C)

satisfying δ̃ = 1 if T ≤ C (failure) and δ̃ = 0 if T > C (censoring).

In practical applications, survival times are accompanied by further in-

formation about the group of subjects under study. This extra layer

of data is expressed by a vector of covariates X = (X1, . . . , Xp)
⊤.

The Cox model postulates a relationship between explanatory variables

and survival time by specifying the hazard as h(t) = h0(t) exp(β
⊤x),

where h0(t) is the baseline hazard and is solely a function of time, while

exp(β⊤x) incorporates covariate information without time dependency

with β = (β1, . . . , βp)
⊤ a vector of regression coefficients. The model

is also referred to as a proportional hazards model, as for two differ-

ent covariate vector profiles xi and xj , the hazard ratio hi(t)/hj(t) =

exp(β⊤(xi − xj)) does not depend on time. To summarize the survival

information, let us consider an i.i.d. sample of size n and write the sur-

vival data as a set of triplets D = {(ti, δ̃i,xi)}ni=1, where ti is the failure

or censoring time. These survival data will be used in the next sec-

tion together with the Laplace-P-spline methodology for approximate

Bayesian inference in a Cox proportional hazards model.

1.4.2 The Cox-Laplace-P-spline model

A flexible specification of the baseline hazard is obtained by writing

the latter as a linear combination of cubic B-splines, namely h0(t) =

exp(θ⊤b(t)), with b(·) = (b1(·), . . . , bK(·))⊤ a cubic B-spline basis with

equidistant knots defined on [0, tu] and tu = max(t1, . . . , tn) the upper

bound of the follow-up. Abrahamowicz et al. (1992) were among the first

to use regression splines for density estimation in presence of censoring.

They model the density as a linear combination of cubic M-splines and

estimate the coefficients via pseudo maximum likelihood. Later, Rosen-

berg (1995) proposed another approach in which the hazard is modeled

as a linear combination of cubic B-splines and the optimal amount of

smoothness is determined by maximization of the Akaike information

criterion (Akaike, 1973). Using the relationship between the survival

and cumulative hazard functions, we can write:

S0(t) = exp

(
−
∫ t

0
h0(s) ds

)
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and using the B-spline specification, we get:

S0(t) = exp

(
−
∫ t

0
exp

(
θ⊤b(s)

)
ds

)

≈ exp


−

j(t)∑

j=1

exp
(
θ⊤b(sj)

)
∆j


 , (1.5)

where the integral is approximated by the rectangle method with [0, tu]

partitioned into J (say 300) small width intervals [φj−1, φj ] and 0 =

φ0 < φ1 < · · · < φJ = tu, where sj and ∆j respectively denote the

midpoint and width of [φj−1, φj ] and j(t) is an index returning the

interval containing t.

Let ξ = (θ1, . . . , θK , β1, . . . , βp)
⊤ be the vector of B-spline amplitudes

and regression coefficients with dimension dim(ξ) = K + p. Using

Bayesian P-splines (Lang and Brezger, 2004), the prior on the spline

vector is θ|λ ∼ Ndim(θ)

(
0, λ−1P−1

)
and we further assume the follow-

ing prior for the vector of regression coefficients β ∼ Ndim(β)

(
0, ζ−1Ip

)

with small precision (say ζ = 10−5). Hence, the prior for the spline and

regression parameters is ξ|λ ∼ Ndim(ξ)

(
0, Q−1

ξ

)
, with precision matrix:

Qξ := Qξ(λ) =

(
λP 0

0 ζIp

)
.

Furthermore, the following priors are imposed on the elements of the hy-

perparameter vector η = (λ, δ)⊤, λ|δ ∼ G(ν/2, (νδ)/2) and δ ∼ G(aδ, bδ)
(cf. Section 1.3.4) with aδ = bδ = 10−4 and ν = 3.

1.4.3 Approximated conditional posterior for ξ

Under right censoring, the likelihood of the Cox model is given by

L(β;D) =
∏n

i=1

(
h0(ti) exp(β

⊤xi)
)δ̃i

(S0(ti))
exp(β⊤xi) (see e.g. Dey et al.,

1998, p. 275) and so the log-likelihood function is:

ℓ(β;D) =

n∑

i=1

{
δ̃i

(
log h0(ti) + β⊤xi

)
+ (logS0(ti)) exp(β

⊤xi)
}
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⇔ ℓ(ξ;D) ≈
n∑

i=1

{
δ̃i

(
θ⊤b(ti) + β⊤xi

)

−




j(ti)∑

j=1

exp
(
θ⊤b(sj)

)
∆j


 exp(β⊤xi)

}
, (1.6)

where the approximation in (1.6) follows from using (1.5). Let us denote

the contribution of the ith observation to the log-likelihood by gi(ξ) =

δ̃i
(
θ⊤b(ti) + β⊤xi

)
−
(∑j(ti)

j=1 exp
(
θ⊤b(sj)

)
∆j

)
exp(β⊤xi).

Using Bayes’ rule, the conditional posterior of the vector of spline and

regression parameters is:

p(ξ|λ,D) ∝ exp

(
n∑

i=1

gi(ξ)−
1

2
ξ⊤Qξξ

)
. (1.7)

The Laplace approximation to (1.7) is obtained in an iterative fashion.

First, a second-order Taylor expansion of gi(ξ) is computed around an

arbitrary chosen point ξ(0):

gi(ξ) ≈ gi(ξ
(0)) + (ξ − ξ(0))⊤∇gi(ξ)|ξ=ξ(0)

+
1

2
(ξ − ξ(0))⊤∇2gi(ξ)|ξ=ξ(0)(ξ − ξ(0))

≈
(
gi(ξ

(0)) +
1

2
ξ(0)

⊤∇2gi(ξ)|ξ=ξ(0)ξ
(0) − ξ(0)

⊤∇gi(ξ)|ξ=ξ(0)

)

+ξ⊤∇gi(ξ)|ξ=ξ(0) +
1

2
ξ⊤∇2gi(ξ)|ξ=ξ(0)ξ

−ξ⊤∇2gi(ξ)|ξ=ξ(0)ξ
(0)

≈ constant+ ξ⊤
(
∇gi(ξ)|ξ=ξ(0) −∇2gi(ξ)|ξ=ξ(0)ξ

(0)
)

+
1

2
ξ⊤∇2gi(ξ)|ξ=ξ(0)ξ, (1.8)

with gradient ∇gi(ξ)|ξ=ξ(0) and Hessian matrix ∇2gi(ξ)|ξ=ξ(0) given by:

∇gi(ξ)|ξ=ξ(0) =

(
∂

∂θ1
gi(ξ), . . . ,

∂

∂θK
gi(ξ),

∂

∂β1
gi(ξ), . . . ,

∂

∂βp
gi(ξ)

)⊤

ξ=ξ(0)
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∇2gi(ξ)|ξ=ξ(0) =




∂2

∂θ∂θ⊤ gi(ξ)
︸ ︷︷ ︸

K×K

∂2

∂θ∂β⊤ gi(ξ)

︸ ︷︷ ︸
K×p

∂2

∂β∂θ⊤ gi(ξ)

︸ ︷︷ ︸
p×K

∂2

∂β∂β⊤ gi(ξ)

︸ ︷︷ ︸
p×p




ξ=ξ(0)

.

The first K entries of the gradient are given by:

∂

∂θk
gi(ξ) = δ̃ibk(ti)−




j(ti)∑

j=1

h0(sj)bk(sj)∆j


 exp(β⊤xi), k = 1, . . . ,K

and the last p elements of the gradient are:

∂

∂βm
gi(ξ) = δ̃ixim −




j(ti)∑

j=1

h0(sj)∆j


 exp(β⊤xi) xim, m = 1, . . . , p.

To obtain the upper left block of the Hessian matrix first note that:

∂2

∂θk∂θl
gi(ξ) = −




j(ti)∑

j=1

h0(sj)bk(sj)bl(sj)∆j


 exp(β⊤xi). (1.9)

Since j(ti) indicates the bin containing observation ti, we can define the

following matrices:

Bs :=



b1(s1) . . . bK(s1)

...
. . .

...

b1(sJ) . . . bK(sJ)


 , Jj(ti) :=




1 0 . . . 0 0 . . . 0

0 1 . . . 0 0 . . . 0
...

. . .
. . .

...
...

. . .
...

0 . . . . . . 1 0 . . . 0

0 . . . . . . 0 0 . . . 0
...

. . .
. . .

...
...

. . .
...

0 . . . . . . 0 0 . . . 0




,

where Jj(ti) is a J×J matrix with upper left block a j(ti)×j(ti) identity
matrix. Hence, we can write more compactly:
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∂2

∂θ∂θ⊤ gi(ξ) = −B⊤
s

(
diag {h0(sj)}Jj=1 Jj(ti)

)
Bs exp(β

⊤xi) ∆j ,

where diag {h0(sj)}Jj=1 is a diagonal matrix of dimension J × J with

diagonal elements h0(s1), . . . , h0(sJ). The upper right (and lower left)

block of the Hessian matrix is:

∂2

∂θk∂βm
gi(ξ) = −




j(ti)∑

j=1

h0(sj)bk(sj)∆j


 exp(β⊤xi) xim

for k = 1, . . . ,K and m = 1, . . . , p. Finally, the lower right block is:

∂2

∂β∂β⊤ gi(ξ) = −




j(ti)∑

j=1

h0(sj)∆j


 exp(β⊤xi) xix

⊤
i .

Defining
∑n

i=1∇gi(ξ)|ξ=ξ(0) := ∇gξ(0) and
∑n

i=1∇2gi(ξ)|ξ=ξ(0) := ∇2gξ(0) ,

we obtain the following expression for the sum of the functions gi(·)
omitting the constant:

n∑

i=1

gi(ξ) ≈ ξ⊤
(
∇gξ(0) −∇2gξ(0)ξ

(0)
)
+

1

2
ξ⊤∇2gξ(0)ξ.

Plugging the above result in (1.7) yields the Laplace approximation:

p̃G(ξ|λ,D) ∝ exp

(
−1

2
ξ⊤
(
Qξ −∇2gξ(0)

)
ξ + ξ⊤

(
∇gξ(0) −∇2gξ(0)ξ

(0)
))

.

Solving ∇ log p̃G(ξ|λ,D) = 0 and computing
(
−∇2 log p̃G(ξ|λ,D)

)−1
, we

find the mean and variance-covariance matrix of the Laplace approxima-

tion, namely ξ(1)(λ) =
(
Qξ(λ)−∇2gξ(0)

)−1 (
∇gξ(0) −∇2gξ(0)ξ

(0)
)
and

Σ(1)(λ) =
(
Qξ(λ)−∇2gξ(0)

)−1
respectively.

We repeat the above Laplace approximation in an iterative algorithm

until convergence to a Gaussian approximation centered around the pos-

terior mode of p(ξ|λ,D). We will denote by ξ∗λ = (Qξ(λ)− H̃)−1ϖ̃ and

Σ∗
λ = (Qξ(λ)−H̃)−1 the posterior mode and covariance respectively to-
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wards which the iterative Laplace approximation scheme has converged,

with H̃ the Hessian of the log-likelihood at convergence and ϖ̃ the vec-

tor
(
∇gξ − H̃ξ

)
at convergence. By abuse of notation, we can write the

Laplace approximation as p̃G(ξ|λ,D) = Ndim(ξ) (ξ
∗
λ,Σ

∗
λ).

1.4.4 Marginal posterior of the penalty parameter

The Laplace approximation to the conditional posterior p(ξ|λ,D) is a

crucial component for approximating the marginal posterior of the hy-

perparameter vector. The latter posterior is given by:

p(η|D) =
p(η, ξ|D)

p(ξ|η,D)
=
p(D|η, ξ) p(η, ξ)
p(D)p(ξ|η,D)

∝ L(ξ;D) p(ξ|λ) p(λ|δ) p(δ)
p(ξ|λ,D)

.

The above expression is approximated as follows:

p̃(η|D) =
L(ξ;D) p(ξ|λ) p(λ|δ) p(δ)

p̃G(ξ|λ,D)

∣∣∣∣∣
ξ=ξ∗λ

= |Σ∗
λ|

1
2 exp

(
ℓ(ξ∗λ;D)− 1

2
ξ∗⊤λ Qξξ

∗
λ

)
|Qξ|

1
2 λ

ν
2
−1 δ

ν
2
+aδ−1

× exp

(
−δ
(
νλ

2
+ bδ

))

= |Σ∗
λ|

1
2 exp

(
ℓ(ξ∗λ;D)− 1

2
ξ∗⊤λ Qξξ

∗
λ

)
λ

K+ν
2

−1 δ
ν
2
+aδ−1

× exp

(
−δ
(
νλ

2
+ bδ

))
,

where the last line follows from |Qξ|
1
2 = λ

K
2 |P | 12 ζ p

2 ∝ λ
K
2 as the deter-

minant of a block diagonal matrix is equal to the product of the determi-

nants of the diagonal blocks. The chosen priors for λ and δ leads to con-

ditional conjugacy for δ, i.e. (δ|λ,D) ∼ G(0.5ν + aδ, 0.5νλ+ bδ). Hence,∫ +∞
0 δ

ν
2
+aδ−1 exp

(
−δ
(
νλ
2 + bδ

))
dδ = Γ

(
ν
2 + aδ

) (
νλ
2 + bδ

)−( ν
2
+aδ), so

that the (approximated) marginal posterior of λ is:

p̃(λ|D) =

∫ +∞

0
p̃(λ, δ|D) dδ

= |Σ∗
λ|

1
2 exp

(
ℓ(ξ∗λ;D)− 1

2
ξ∗⊤λ Qξξ

∗
λ

)
λ

K+ν
2

−1

(
νλ

2
+ bδ

)−( ν
2
+aδ)

.
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For greater numerical stability it is preferable to work on a log-scale

for the penalty parameter. We therefore propose the change of variable

v = log(λ) and use the method of transformations to obtain:

p̃(v|D) = |Σ∗
v|

1
2 exp

(
ℓ(ξ∗v;D)− 1

2
ξ∗⊤v Qv

ξξ
∗
v

)
exp(v)

K+ν
2

×
(
ν exp(v)

2
+ bδ

)−( ν
2
+aδ)

, (1.10)

with the following matrix being a function of v:

Qv
ξ :=

(
exp(v)P 0

0 ζIp

)
,

vector ξ∗v = (Qv
ξ−H̃)−1ϖ̃ and covariance matrix Σ∗

v = (Qv
ξ−H̃)−1. The

approximated posterior (1.10) is a univariate function of v for which we

can numerically compute the maximum a posteriori v̂, as well as an

equidistant grid ℵv =
{
v(m)

}M
m=1

that will serve as a set of quadrature

points to compute the approximate posterior of the vector ξ (cf. Section

1.2.3). Figure 1.6 illustrates the shape of p̃(v|D) for a sample of size n =

300 and survival times generated from a Weibull distribution. For this

particular dataset the posterior mode is v̂ = argmaxv p̃(v|D) = 7.232.

4 5 6 7 8 9 10

0
.0

0
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0
.2

0
.3

0
.4

v

~ p
 (v

|D
)

v̂ =7.232

Figure 1.6: Approximated marginal posterior p̃(v|D) obtained with a

sample of n = 300 survival times governed by a Weibull distribution.

Vertical tick marks correspond to quadrature points and the dashed line

is the maximum a posteriori.
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The vertical tick marks along the x-axis is a set of (equidistant) quadra-

ture points ℵv = {5.16, 5.59, . . . , 9.04} that will be used to approximate

p(ξ|D). The quadrature points are chosen so that the posterior mass

between the lower bound (equal to 5.16) and the upper bound (equal to

9.04) is approximately 95%.

1.4.5 Approximate marginal posterior for ξ

The marginal posterior for ξ is obtained by integration:

p(ξ|D) =

∫ +∞

0

∫ +∞

0
p(ξ, λ, δ|D) dδ dλ

=

∫ +∞

0
p(ξ|λ,D)

(∫ +∞

0
p(λ, δ|D) dδ

)
dλ

≈
∫ +∞

0
p̃G(ξ|λ,D)

(∫ +∞

0
p̃(λ, δ|D) dδ

)
dλ

≈
∫ +∞

0
p̃G(ξ|λ,D) p̃(λ|D) dλ

≈
∫

R
p̃G(ξ| exp(v),D) p̃(v|D) dv

≈
M∑

m=1

p̃G

(
ξ| exp

(
v(m)

)
,D
)
p̃(v(m)|D) ∆v, (1.11)

where ∆v is the grid width of the equidistant grid ℵv (cf. Section 1.4.4),

v(m) ∈ ℵv and M is the total number of grid points. Defining the

following weights:

ωm :=
p̃(v(m)|D) ∆v∑M

m=1 p̃(v
(m)|D) ∆v

, m = 1, . . . ,M (1.12)

and dividing (1.11) by the denominator of (1.12) results in the following

approximation of the marginal posterior of the spline and regression

coefficients:

p̂(ξ|D) =

M∑

m=1

ωm Ndim(ξ)

(
ξ∗
v(m) ,Σ

∗
v(m)

)
, (1.13)

which corresponds to a finite mixture of multivariate Gaussian densities

with mean ξ∗
v(m) = (Qv(m)

ξ −H̃)−1ϖ̃, covariance matrix Σ∗
v(m) = (Qv(m)

ξ −
H̃)−1 and Qv(m)

ξ is matrix Qv
ξ evaluated at the quadrature point v(m).
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A point estimate of the vector of spline and regression coefficients is given

by the mixture mean ξ̂ =
(
θ̂
⊤
, β̂

⊤)⊤
=
∑M

m=1 ωm ξ∗
v(m) and replacing

θ̂ in (1.5) yields the estimated baseline survival Ŝ0(t). The posterior

variance-covariance matrix arising from the mixture is (see Frühwirth-

Schnatter, 2006) V (ξ|D) =
∑M

m=1 ωmΣ∗
v(m)+

∑M
m=1 ωm(ξ∗

v(m)−ξ̂)(ξ∗
v(m)−

ξ̂)⊤. The posterior standard deviation of the hth element ξh is thus given

by the square root of the hth diagonal entry of V (ξ|D). From the joint

posterior in (1.13), one can easily obtain the (approximated) posterior

of a single element, say ξh, which corresponds to a mixture of univariate

Gaussians :

p̂(ξh|D) =

M∑

m=1

ωm N1

(
ξ∗
h,v(m) ,Σ

∗
hh,v(m)

)
, (1.14)

where the scalar ξ∗
h,v(m) is the hth entry of the vector ξ∗

v(m) and Σ∗
hh,v(m)

is the variance component corresponding to the hth element in the main

diagonal of the variance-covariance matrix Σ∗
v(m) . The posterior (1.14)

can be exploited to numerically construct a (1−α)×100% quantile-based

credible interval for ξh. Figure 1.7 illustrates (in red) the posterior (1.14)

for two arbitrarily chosen B-spline coefficients θ8 and θ13. The blue

and green curves correspond to the unweighted and weighted Gaussian

components respectively when M = 10 quadrature points are chosen in

the mixture.
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Figure 1.7: Approximate posterior distribution for two B-spline ampli-

tudes θ8 and θ13 (red). Blue and green curves correspond to unweighted

and weighted Gaussian density components respectively.
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1.4.6 A small simulation study

To evaluate the performance of the Cox-Laplace-P-spline model, a small

simulation study is implemented with three covariates, X1 ∼ N (0, 0.25),

X2 ∼ U(0, 1) and X3 ∼ Bern(0.5) to which we subtract 0.5 to ob-

tain a mean-centered covariate. To generate survival times from the

Cox model, we follow Bender et al. (2005) with a Weibull distribu-

tion for the baseline characterized by the probability density function

f0(t) = (a/ba)ta−1 exp(−(t/b)a) for t > 0 and fix a = 2.4 and b = 2.1.

The survival time is generated as Ti ∼ b
(
− log (U(0, 1)) exp(−β⊤xi)

)1/a
,

with β1 = 2.20, β2 = 1.30 and β3 = −0.90.

Two scenarios are considered for the censoring scheme: (C0%) absence of

censoring and (C15%) right censoring governed by a uniform distribution

Ci ∼ U(1, 6) yielding approximately 15% of censored observations. To

estimate the baseline survival S0(t) = exp(−(t/b)a), we specify 30 cubic

B-splines (with a third order penalty) in [0, tu], where tu is the largest

observed failure or censoring time for a given dataset. The simulation

setting entails S = 500 replications of a sample of size n = 300.

To assess the frequentist properties of the Bayesian estimator of a regres-

sion coefficient βj , the following measures of performance are computed.

The empirical bias is defined as the average of the difference between

the estimate and the true parameter value over S replications:

Biasβ̂j
:=

1

S

S∑

s=1

(
β̂
(s)
j − βj

)
.

The empirical standard error (ESE) is taken to be the sample standard

deviation of the estimates over S replications:

ESEβ̂j
:=

{
1

S − 1

S∑

s=1

(
β̂
(s)
j − ¯̂

βj

)2
} 1

2

,

where
¯̂
βj = S−1

∑S
s=1 β̂

(s)
j . The root mean square error (RMSE) is de-

fined as the square root of the average of the squared difference between

the estimate and the true value over S replications:
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RMSEβ̂j
:=

{
1

S

S∑

s=1

(
β̂
(s)
j − βj

)2
} 1

2

.

The coverage probability of the 90% and 95% (pointwise) credible inter-

vals for βj is the average of an indicator function I(·) that takes the value
1 if the constructed interval (denoted by CI90%,j or CI95%,j) includes the

true parameter value and 0 otherwise:

CP90%,j :=
1

S

S∑

s=1

I
(
βj ∈ CI

(s)
90%,j

)
,

CP95%,j :=
1

S

S∑

s=1

I
(
βj ∈ CI

(s)
95%,j

)
.

We also report the results obtained with the coxph() function from the

survival package in R, where the (1−α)×100% confidence interval for

βj is computed as β̂j ± zα/2

√
V̂ (β̂j) (asymptotically valid). Table 1.1

summarizes the results for the estimation of regression coefficients.

C0% Parameter Bias CP90% CP95% ESE RMSE

β1 = 2.20 -0.019 91.4 95.6 0.151 0.152
LPS β2 = 1.30 -0.013 91.6 95.4 0.207 0.207

β3 = −0.90 0.009 89.8 95.4 0.124 0.124

β1 = 2.20 0.012 91.4 95.0 0.158 0.158
coxph() β2 = 1.30 0.004 90.6 95.6 0.212 0.211

β3 = −0.90 0.000 88.6 95.4 0.126 0.126

C15% Parameter Bias CP90% CP95% ESE RMSE

β1 = 2.20 -0.001 90.4 95.0 0.166 0.166
LPS β2 = 1.30 -0.015 90.6 95.4 0.231 0.231

β3 = −0.90 0.001 87.8 94.4 0.140 0.140

β1 = 2.20 0.015 89.8 94.0 0.171 0.171
coxph() β2 = 1.30 -0.001 90.6 94.8 0.234 0.234

β3 = −0.90 -0.002 88.4 94.0 0.141 0.141

Table 1.1: Simulation results for S = 500 replicates of sample size n =

300 with the Laplace-P-spline approach and the coxph() function under

absence of censoring C0% and presence of right censoring C15%.
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The above simulation results show that the LPS and coxph() approaches

behave similarly. The estimated bias is nearly zero under the two censor-

ing scenarios and the estimated coverage probabilities are relatively close

to their nominal level. In terms of ESE and RMSE the LPS approach

exhibits slightly lower values than coxph(). The LPS methodology is

computationally inexpensive as under the specified simulation setting it

takes approximately 160 milliseconds for a dataset of size n = 300 to fit

the model with a total of 33 parameters to be estimated. Figures 1.8

and 1.9 show the estimated baseline survival and hazard respectively

under the two considered censoring scenarios.
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Figure 1.8: Estimation of the baseline survival (a) and baseline hazard

(b) with the Laplace-P-spline method (one gray curve per dataset) under

absence of censoring. The black curves are the target baseline functions.
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Figure 1.9: Estimation of the baseline survival (a) and baseline hazard

(b) with the Laplace-P-spline method (one gray curve per dataset) with

15% right censoring. Black curves are the target baseline functions and

dashed curves are the pointwise median of the 500 estimated curves.
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It is also worth noting that the above simulation study uses the following

parameterization for the prior hyperparameters aδ = bδ = 10−4 and

ν = 3. Further simulations (not reported here) have been implemented

with the alternative parameterization proposed in Section 1.3.4, namely

aδ = bδ = 0.5 and ν = 1. It turns out that there is little sensitivity of

posterior estimates with regard to the chosen parameterization as the

simulation results are similar to those reported in Table 1.1.

1.5 Conclusion

In this chapter, we presented the groundwork of the thesis by focusing

on Laplace’s method and P-splines. After having introduced basic con-

cepts of Laplace approximations, we showed how they can be embedded

in the Bayesian paradigm to approximate posterior quantities of interest

and hence serve as a surrogate to classic MCMC methods for posterior

exploration. Furthermore, we explained the notion of nested approxima-

tions and its usefulness in Bayesian modeling. With regard to the spline

facet, B-splines and their penalized version have been introduced with

a particular emphasis on the important role played by the roughness

penalty. Finally, we combined Laplace’s method and Bayesian P-splines

for fast inference in a Cox model and measured the performance of the

LPS approach in a small simulation exercise.





CHAPTER 2
Fast Bayesian inference in a
flexible promotion time cure
model based on Laplace-P-splines
This chapter is based on the paper: Gressani, O. and Lambert, P. (2018). Fast

Bayesian inference using Laplace approximations in a flexible promotion time cure

model based on P-splines, Computational Statistics and Data Analysis, Volume 124,

pages 151-167. https://doi.org/10.1016/j.csda.2018.02.007

2.1 Motivation

Bayesian methods for flexible time-to-event models usually rely on the

theory of Markov chain Monte Carlo (MCMC) to sample from posterior

distributions and perform statistical inference. In this chapter, a novel

methodology is proposed to overcome the inconvenient facets inherent

to MCMC sampling (e.g. convergence problems, huge computational

resources) with the major advantage that posterior distributions of la-

tent variables can rapidly be approximated with high accuracy. This is

achieved by exploiting the synergy between Laplace’s method for pos-

terior approximations and P-splines, a flexible tool for nonparametric

modeling. The methodology is developed in the class of cure survival

models, a useful extension of standard time-to-event models where it is

assumed that an unknown proportion of unidentified (cured) units will

never experience the monitored event.

35
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An attractive feature of this approach is that point estimators and cred-

ible intervals can be straightforwardly constructed even for complex

functionals of latent model variables. The properties of the proposed

methodology are evaluated using simulations and illustrated on two real

datasets. The fast computational speed and accurate results suggest

that the combination of P-splines and Laplace approximations can be

considered as a serious competitor of MCMC to make inference in semi-

parametric models, as illustrated on survival models with a cure fraction.

2.2 Introduction

There is a growing interest for cure rate models in survival analysis as

witnessed by the number of published papers on that topic in statistical

journals. These models have gained in popularity as they intrinsically

account for long-term survivors that will never experience the event

of interest even when followed-up for an extended time period. The

promotion time (cure) model introduced by Yakovlev et al. (1996) is

motivated by cancer tumor kinetics, the biological mechanism underly-

ing the proliferation and growth of carcinogenic cells. In particular, let

N ∼ Poisson
(
ϕ(x)

)
be the number of carcinogenic cells affecting a given

subject with mean ϕ(x) = exp(β0+x⊤β). To the ith cell is associated a

latent event time Ti ≥ 0 representing the duration necessary for the cell

to grow to a detectable tumor mass. Latent event times {T1, . . . , TN} are
assumed to be independently and identically distributed with common

cumulative distribution function F (t) and the observed survival time is

defined as T = min{T1, . . . , TN}.

When a Cox proportional hazards model (Cox, 1972) is used to model

the N conditional latent distributions F (ti|z) = 1 − S0(ti)
exp(z⊤γ), i =

1, . . . , N one can show that the resulting survival function of T is (see

Tsodikov, 1998; Chen et al., 1999):

Sp(t|x, z) = exp (−ϕ(x)F (t|z))
= exp

(
− exp

(
β0 + x⊤β

)(
1− S0(t)

exp(z⊤γ)
))

. (2.1)

In this model, a subject is cured when N = 0, an event arising with a

probability given by P (N = 0 |x, z) = limt→∞Sp(t|x, z) = exp(−ϕ(x)).
Alternative specifications are proposed in the literature to model the dis-
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tribution of latent event times F (ti), for example Ibrahim et al. (2001)

propose a semiparametric form for the latent distribution involving a

smoothing parameter controlling the degree of parametricity in the right

tail of the population survival function, while Zeng et al. (2006) in-

troduce a semiparametric class of cure models taking into account a

subject-specific frailty.

Model (2.1) can be estimated by maximum likelihood methods in a fre-

quentist setting (see Tsodikov, 2002, 2003). From a Bayesian perspec-

tive, Yin and Ibrahim (2005) assume a piecewise exponential model for

the baseline survival function with a tradeoff between model flexibility

and the number of partitions of the time axis. More recently, Bremhorst

and Lambert (2016) use a large number of B-splines to specify the base-

line hazard and, following Eilers and Marx (1996), counterbalance the

flexibility of the model by using a roughness penalty based on finite

differences of adjacent B-spline coefficients.

The rather complex structure of the posterior distributions in the latter

Bayesian frameworks requires the use of MCMC techniques. For such

models, the MCMC toolbox is usually accompanied by a large computa-

tional burden and challenging convergence problems under the original

parameterization. A crucial component explaining the inefficiency of re-

jection sampling techniques is a strong posterior correlation appearing

firstly among latent variables and secondly between latent variables and

hyperparameters of the model, thus having a global impact on conver-

gence speed and autocorrelation. Integrated Nested Laplace Approxi-

mations (INLA) is a sampling-free Bayesian methodology that allows to

obtain marginal posteriors in the class of latent Gaussian models and

has been recognized to be an interesting alternative to standard MCMC

methods. In this dimension, Martino (2007) and Rue et al. (2009) are

the pioneering references showing how to perform approximate Bayesian

inference in latent Gaussian models via Laplace approximations.

While INLA has been shown to work well in a large variety of applica-

tions like stochastic volatility models (Martino, Aas, Lindqvist, Neef and

Rue, 2011), generalized dynamic linear models (Ruiz-Cárdenas et al.,

2012) and spatio-temporal disease mapping models (Schrödle and Held,

2011), there seems to be little work related to survival analysis or pe-

nalized B-spline models.
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Among the contributions on the subject, we can cite Fong et al. (2010)

who combine INLA and O’Sullivan splines in a nonparametric smooth-

ing setting. Martino, Akerkar and Rue (2011) investigate the use of

INLA with the R-INLA package (www.r-inla.org) by considering a

Cox model where the baseline hazard has a parametric or semiparamet-

ric specification. Also, Jiang et al. (2014) study the effect of environ-

mental radiation on cancer by using a cure fraction mixture survival

model with a Weibull distribution for event times.

We investigate how Laplace approximations can be extended and com-

bined with penalized B-splines in the context of a semiparametric pro-

motion time cure model. Bridging the gap between Lapace’s method

and regression splines brings a twofold advantage. First, it provides a

fast computational approach to approximate posterior distributions and

second, the spline dimension allows for a flexible specification of the

baseline distribution yielding smooth estimates of survival quantities.

Another crucial point is that in contrast to the classic INLA approach

which focuses mainly on posterior marginal univariate distributions, our

methodology permits to compute reliable approximations to the poste-

rior joint distributions of latent variables including regression parame-

ters, with the implication that set estimators can be derived even for

complicated functions of spline and regression parameters such as the

baseline or conditional population survival functions.

Accordingly, the end user will be endowed with a powerful and rapid tool

for making inference in the promotion time cure model. Furthermore,

while the code design underlying INLA assumes a one-to-one connec-

tion between data points and a subset of the latent vector, implying

that the dimension of the latter grows with the sample size n, our mod-

eling strategy choice is more efficient as it involves a latent vector of a

dimension unaffected by the number of observations. Hence, given that

the number of B-splines is fixed (to a large value and counterbalanced by

a roughness penalty) in the P-spline approach (Eilers and Marx, 2010),

the latent vector dimension grows only with the number of regressors in

the model and not with n.

This chapter is organized as follows. In Section 2.3, the Laplace-P-spline

promotion time cure model is defined and the gradient and Hessian of the

log-likelihood are computed to obtain a Gaussian approximation of the

www.r-inla.org
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conditional posterior distribution of the vector of spline and regression

parameters. A strategy is proposed to explore the posterior distribution

of the hyperparameter vector and the joint posterior of spline and re-

gression coefficients is derived. The construction of credible intervals for

the baseline and population survival functions is also addressed here. In

Section 2.4, the merits of the proposed methodology will be assessed by

extensive simulations with different scenarios regarding the percentages

of cured individuals and right censored subjects. Coverage properties of

credible intervals will also be considered. In Section 2.5, we apply the

model to two real datasets and Section 2.6 concludes with a discussion.

2.3 Laplace-P-spline promotion time model

2.3.1 Flexible modeling of the baseline hazard

Following Rosenberg (1995), the log-hazard corresponding to the base-

line survival function S0(t) in (2.1) is specified as a linear combination of

cubic B-splines h0(t) = exp
(
θ⊤b(t)

)
, where b(·) = (b1(·), . . . , bK(·))⊤

is a cubic B-spline basis obtained by taking equidistant knots on the

compact set [0, tu], with tu the upper bound of the follow-up and θ =

(θ1, . . . , θK)⊤ is the vector of B-spline coefficients. Under this specifica-

tion and using the rectangle method, the baseline survival function in

(2.1) can be approximated as follows (cf. Chapter 1 Equation 1.5):

S0(t) ≈ exp


−

j(t)∑

j=1

exp
(
θ⊤b(sj)

)
∆j


 , (2.2)

where [0, tu] is divided into J (say 300) small intervals of equal width

∆j with midpoint sj . The term j(t) ∈ {1, 2 . . . , J} is a number corre-

sponding to the interval containing t.

2.3.2 Latent variables and priors

The vector ξ = (θ1, . . . , θK , β0, . . . , βp, γ1, . . . , γl)
⊤ of dimension dim(ξ) =

K + (p+ 1) + l gathers all the latent variables of the model: it contains

the B-spline coefficients
{
θk : k = 1, . . . ,K

}
, the regression coefficients{

βm : m = 0, . . . , p
}
used to model the expected number of carcinogenic

cells and the regression parameters
{
γs : s = 1, . . . , l

}
in the Cox model

describing the incubation time of a given cell.
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The key idea behind P-splines (Eilers and Marx, 1996) is to use a fixed

large number of B-spline basis functions and to compensate the flexibil-

ity by a roughness penalty on finite differences of contiguous B-spline

coefficients. The Bayesian analogue (Lang and Brezger, 2004) translates

the roughness penalty into a multivariate normal prior distribution for

the spline coefficients θ|λ ∼ NK(0, λ−1P−1), with P = D⊤
r Dr + ϵIK

where Dr is a (K − r) ×K matrix yielding rth order differences when

applied on a K-vector, and λ is a nonnegative roughness penalty param-

eter. For an arbitrary small ϵ
(
say ϵ = 10−6

)
, the diagonal perturbation

ϵIK makes P full rank. Then, the prior for the full vector ξ given λ can

be written as:

ξ|λ ∼ Ndim(ξ)

(
µξ,Σξ(λ)

)
, Σξ(λ) =

(
λ−1P−1 0

0 Σβ,γ

)
,

where the vector µξ attributes a zero mean to the B-spline coefficients

and a potential informative prior mean on the regression coefficients with

(prior) positive-definite variance-covariance matrix Σβ,γ . Whenever a

priori knowledge on central tendency or correlation measures is available

for the regression coefficient vector, it can be incorporated into the prior

ξ|λ through the mean and covariance structure.

The hyperparameters of the model are given by η = (λ, δ)⊤ as, following

Jullion and Lambert (2007), we use a robust specification for the rough-

ness penalty prior λ|δ ∼ G
(
ν/2, (νδ)/2

)
with an uninformative proper

distribution on parameter δ ∼ G(aδ, bδ). The latter reference shows that
when aδ = bδ are set to a small value (say 10−4), the estimated curve is

not sensitive to the choice of ν (here set equal to 3).

2.3.3 Conditional posterior and Laplace approximation

LetDi = (ti, δ̃i,xi, zi) denote the observables for unit i, with ti the failure

or censoring time, δ̃i a dichotomous event indicator and xi, zi the covari-

ates. The log-likelihood function of the promotion time cure model is

ℓ(ξ;D) =
n∑

i=1

{
δ̃i log hp(ti|xi, zi) + logSp(ti|xi, zi)

}
, where D =

⋃n
i=1Di

and hp(·|x, z) is the conditional population hazard function, hp(t|x, z) =
ϕ(x) exp(z⊤γ) S0(t)

exp(z⊤γ)h0(t). Using the B-spline specification of the

baseline hazard, we can write more compactly ℓ(ξ;D) ≈∑n
i=1 gi(ξ).
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The scalar-valued function gi : Rdim(ξ) → R gives the contribution of the

ith unit to the log-likelihood and is given by:

gi(ξ) = δ̃i

(
β0 + x⊤

i β + z⊤i γ + θ⊤b(ti)

− exp(z⊤i γ)

j(ti)∑

j=1

exp
(
θ⊤b(sj)

)
∆j

)

− exp(β0 + x⊤
i β)


1− exp


−

j(ti)∑

j=1

exp
(
θ⊤b(sj)

)
∆j




exp(z⊤i γ)

 .

The first step of our procedure is to derive the Laplace approximation

of the conditional posterior distribution of the spline and regression pa-

rameters, namely:

p(ξ|λ,D) ∝ exp

(
n∑

i=1

gi(ξ)−
1

2
ξ⊤Q(λ)ξ + ξ⊤Q(λ)µξ

)
, (2.3)

where Q(λ) = Σ−1
ξ (λ) is the precision matrix. One major difference with

the theoretical set-up described in Rue et al. (2009) is the dimension

of the latent vector assumed there to be larger than the number of

observations; it is usually much smaller here with dim(ξ) << n. With

non-Gaussian responses, p(ξ|λ,D) is non-Gaussian and unknown. To

make it tractable, we use Laplace’s method and compute a second-order

Taylor expansion of gi(ξ) around an arbitrary point ξ(0) ∈ Rdim(ξ):

gi(ξ) ≈ constant+ ξ⊤
(
∇gi(ξ)|ξ=ξ(0) −∇2gi(ξ)|ξ=ξ(0)ξ

(0)
)

+
1

2
ξ⊤∇2gi(ξ)|ξ=ξ(0)ξ, (2.4)

where the gradient and Hessian of gi(ξ) are given by:

∇gi(ξ)|ξ=ξ(0) =

(
∂gi(ξ)

∂θ1
. . .

∂gi(ξ)

∂θK

∂gi(ξ)

∂β0
. . .

. . .
∂gi(ξ)

∂βp

∂gi(ξ)

∂γ1
. . .

∂gi(ξ)

∂γl

)⊤

ξ=ξ(0)

,
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∇2gi(ξ)|ξ=ξ(0) =




∂2

∂θ∂θ⊤ gi(ξ)
︸ ︷︷ ︸

K×K

∂2

∂θ∂β⊤ gi(ξ)

︸ ︷︷ ︸
K×(p+1)

∂2

∂θ∂γ⊤ gi(ξ)

︸ ︷︷ ︸
K×l

∂2

∂β∂θ⊤ gi(ξ)

︸ ︷︷ ︸
(p+1)×K

∂2

∂β∂β⊤ gi(ξ)

︸ ︷︷ ︸
(p+1)×(p+1)

∂2

∂β∂γ⊤ gi(ξ)

︸ ︷︷ ︸
(p+1)×l

∂2

∂γ∂θ⊤ gi(ξ)

︸ ︷︷ ︸
l×K

∂2

∂γ∂β⊤ gi(ξ)

︸ ︷︷ ︸
l×(p+1)

∂2

∂γ∂γ⊤ gi(ξ)

︸ ︷︷ ︸
l×l




ξ=ξ(0)

.

2.3.4 Computation of the gradient

To avoid heavy notation, we define the following scalar quantities:

j(ti)∑

j=1

h0(sj)∆j := ω0i,

j(ti)∑

j=1

h0(sj)bk(sj)∆j := ωk
0i,

j(ti)∑

j=1

h0(sj)bk(sj)bl(sj)∆j := ωkl
0i .

Deriving with respect to the B-spline coefficients gives us:

∂

∂θk
gi(ξ) = δ̃i

(
bk(ti)− exp(z⊤i γ)

j(ti)∑

j=1

h0(sj)bk(sj)∆j

)

+ exp(β0 + x⊤
i β) exp(z

⊤
i γ) exp

(
−

j(ti)∑

j=1

h0(sj)∆j

)exp(z⊤i γ)−1

× exp

(
−

j(ti)∑

j=1

h0(sj)∆j

)(
−

j(ti)∑

j=1

h0(sj)bk(sj)∆j

)
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= δ̃i

(
bk(ti)− exp(z⊤i γ)

j(ti)∑

j=1

h0(sj)bk(sj)∆j

)

− exp(β0 + x⊤
i β + z⊤i γ) exp

(
−

j(ti)∑

j=1

h0(sj)∆j

)exp(z⊤i γ)

×
(

j(ti)∑

j=1

h0(sj)bk(sj)∆j

)
,

so finally we have:

∂

∂θk
gi(ξ) = δ̃i

(
bk(ti)− exp(z⊤i γ)ω

k
0i

)
− exp(β0 + x⊤

i β + z⊤i γ)

×exp
(
− ω0i

)exp(z⊤i γ)
ωk
0i, k = 1, . . . ,K.

The derivatives with respect to the β coefficients are:

∂

∂βm
gi(ξ) = δ̃ixim − exp(β0 + x⊤

i β)

(
1− exp

(
− ω0i

)exp(z⊤i γ)
)
xim,

m = 0, . . . , p with xi0 = 1.

For the derivatives with respect to the γ coefficients, we use the rule:

d

dx
au(x) = au(x)log(a)

d

dx
u(x), a > 0.

∂

∂γs
gi(ξ) = δ̃i

(
zis − exp(z⊤i γ)zisω0i

)
+ exp(β0 + x⊤

i β)

×exp
(
− ω0i)

exp(z⊤i γ)
(
− ω0i

)
exp(z⊤i γ)zis

and more compactly:

∂

∂γs
gi(ξ) = δ̃izis(1− exp(z⊤i γ)ω0i)− exp(β0 + x⊤

i β + z⊤i γ)

×exp
(
− ω0i

)exp(z⊤i γ)
ω0izis, s = 1, . . . , l.
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2.3.5 Computation of the Hessian

To compute the Hessian, we require the block matrices given below.

Blocks 21, 31 and 32 are obtained by transposing blocks 12, 13 and 23.

Block 11 :
∂2

∂θk∂θl
gi(ξ) k = 1, . . . ,K l = 1, . . . ,K.

Block 12 :
∂2

∂θk∂βm
gi(ξ) k = 1, . . . ,K m = 0, . . . , p.

Block 13 :
∂2

∂θk∂γs
gi(ξ) k = 1, . . . ,K s = 1, . . . , l.

Block 22 :
∂2

∂βm∂βl
gi(ξ) m = 0, . . . , p l = 0, . . . , p.

Block 23 :
∂2

∂βm∂γs
gi(ξ) m = 0, . . . , p s = 1, . . . , l.

Block 33 :
∂2

∂γs∂γv
gi(ξ) s = 1, . . . , l v = 1, . . . , l.

Block 11

∂2

∂θk∂θl
gi(ξ) = δ̃i

(
− exp(z⊤i γ)ω

kl
0i

)
− exp(β0 + x⊤

i β + z⊤i γ)

×
(
exp(z⊤i γ)exp

(
− ω0i

)exp(z⊤i γ)−1
exp
(
− ω0i

)

×
(
− ωl

0i)ω
k
0i + exp

(
− ω0i)

exp(z⊤i γ)ωkl
0i

)

and more compactly for k = 1, . . . ,K and l = 1, . . . ,K we have:

∂2

∂θk∂θl
gi(ξ) = −δ̃i exp(z⊤i γ)ωkl

0i + exp(β0 + x⊤
i β + z⊤i γ)

×exp
(
− ω0i

)exp(z⊤i γ)(
exp(z⊤i γ)ω

l
0iω

k
0i − ωkl

0i

)
.

Block 12

∂2

∂θk∂βm
gi(ξ) = −exp(β0 + x⊤

i β + z⊤i γ) exp
(
− ω0i

)exp(z⊤i γ)
ωk
0ixim,

k = 1, . . . ,K m = 0, . . . , p, xi0 = 1.
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Block 13

∂2

∂θk∂γs
gi(ξ) = δ̃i

(
− exp(z⊤i γ)zisω

k
0i

)
− ωk

0i

(
exp(β0 + x⊤

i β + z⊤i γ)

×zis exp
(
− ω0i

)exp(z⊤i γ)
+ exp(β0 + x⊤

i β + z⊤i γ)

×exp
(
− ω0i

)exp(z⊤i γ)(− ω0i

)
exp(z⊤i γ)zis

)

and more compactly for k = 1, . . . ,K and s = 1, . . . , l we have:

∂2

∂θk∂γs
gi(ξ) = −δ̃i exp(z⊤i γ)zisωk

0i − ωk
0i exp(β0 + x⊤

i β + z⊤i γ)

×exp
(
− ω0i

)exp(z⊤i γ)
(
zis − ω0i exp(z

⊤
i γ) zis

)
.

Block 22

∂2

∂βm∂βl
gi(ξ) = −exp(β0 + x⊤

i β)

(
1− exp

(
− ω0i

)exp(z⊤i γ)
)
ximxil,

m, l = 0, . . . , p xi0 = 1.

Block 23

∂2

∂βm∂γs
gi(ξ) = exp(β0 + x⊤

i β) exp
(
− ω0i

)exp(z⊤i γ)(− ω0i

)
exp(z⊤i γ)

×zisxim,

and using the short notation:

∂2

∂βm∂γs
gi(ξ) = −exp(β0 + x⊤

i β + z⊤i γ) exp
(
− ω0i

)exp(z⊤i γ)
ω0izisxim,

m = 0, . . . , p s = 1, . . . , l xi0 = 1.

Block 33

∂2

∂γs∂γv
gi(ξ) = −δ̃i zis exp(z⊤i γ)zivω0i − ω0izis

×
(
exp(β0 + x⊤

i β + z⊤i γ)ziv exp
(
− ω0i

)exp(z⊤i γ)



46 LPS IN THE PROMOTION TIME CURE MODEL

+exp(β0 + x⊤
i β + z⊤

i γ) exp
(
− ω0i

)exp(z⊤i γ)(− ω0i

)

×exp(z⊤i γ)ziv

)

and more compactly:

∂2

∂γs∂γv
gi(ξ) = −δ̃i exp(z⊤i γ)ω0izisziv − ω0izis exp(β0 + x⊤

i β + z⊤i γ)

×exp
(
− ω0i

)exp(z⊤i γ)
(
ziv − ω0i exp(z

⊤
i γ)ziv

)
,

s, v = 1, . . . , l.

Defining the short notation
∑n

i=1∇gi(ξ)|ξ=ξ(0) := ∇gξ(0) for the sum of

gradients and
∑n

i=1∇2gi(ξ)|ξ=ξ(0) := ∇2gξ(0) for the sum of Hessians,

we obtain the following expression for the sum of the functions gi(·) in
(2.4) omitting the constant:

n∑

i=1

gi(ξ) = ξ⊤
(
∇gξ(0) −∇2gξ(0)ξ

(0)
)
+

1

2
ξ⊤∇2gξ(0)ξ. (2.5)

Introducing (2.5) into (2.3), we recover:

p̃G(ξ|λ,D) ∝ exp

(
− 1

2
ξ⊤
(
Q(λ)−∇2gξ(0)

)
ξ

+ξ⊤
(
∇gξ(0) −∇2gξ(0)ξ

(0) +Q(λ)µξ

))
. (2.6)

The above expression is a Gaussian density (up to a multiplicative con-

stant) with mean and variance-covariance matrix that can be derived as

follows. First take the logarithm of (2.6):

log p̃G(ξ|λ,D) =̇ −1

2
ξ⊤
(
Q(λ)−∇2gξ(0)

)
ξ

+ξ⊤
(
∇gξ(0) −∇2gξ(0)ξ

(0) +Q(λ)µξ

)
,

where the symbol =̇ denotes equality up to an additive constant.
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To obtain the mean, we solve ∇ξlog p̃G(ξ|λ,D) = 0:

−
(
Q(λ)−∇2gξ(0)

)
ξ +

(
∇gξ(0) −∇2gξ(0)ξ

(0) +Q(λ)µξ

)
= 0,

so the mean is:

ξ(1) =
(
Q(λ)−∇2gξ(0)

)−1(
∇gξ(0) −∇2gξ(0)ξ

(0) +Q(λ)µξ

)
.

The precision is obtained by computing the negative of the Hessian

matrix:

Q(λ)(1) = −∇2
ξlog p̃G(ξ|λ,D) =

(
Q(λ)−∇2gξ(0)

)
.

Next, we repeat the Taylor expansion around ξ(1) and continue to im-

plement this iterative process in a Newton-Raphson type algorithm to

converge towards a Gaussian approximation centered around the pos-

terior mode of p(ξ|λ,D). Note that in each iteration, the inversion of

a large dimensional matrix of the form Q(λ) − ∇2g is required. This

is achieved by Householder transformations (Householder, 1958; Golub

and Van Loan, 2012), a numerically stable tool for matrix inversion that

achieves a QR decomposition through a sequence of orthogonal trans-

formations of the input matrix.

2.3.6 Exploring the hyperparameter posterior

The next step consists in exploring the posterior distribution of the

hyperparameter vector:

p(η|D) ∝ L(ξ;D)p(ξ|λ)p(λ|δ)p(δ)
p(ξ|λ,D)

, (2.7)

where L(ξ;D) is the likelihood function. In order to avoid identifiability

issues, we follow Bremhorst and Lambert (2016) and fix the last B-spline

coefficient ξK = θK to a large value (say 10), denoted c. This forces the

baseline survival function S0(·) to be virtually zero at the end of the

follow-up. Taking this constraint into account and using the Gaussian

approximation scheme proposed in Section 2.3.3, we can approximate

(2.7) as follows:
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p̃(η|D) =
L(ξ;D)p(ξ|λ)p(λ|δ)p(δ)|ξ=ξ∗cc(λ)

p̃G(ξ−K |ξK = c, λ,D)|ξ−K=ξ∗c(λ)
, (2.8)

where ξ∗c(λ) ∈ Rdim(ξ)−1 is the conditional posterior mean of the Gaus-

sian approximation given ξK = c, and ξ∗cc(λ) ∈ Rdim(ξ) corresponds to

the vector ξ∗c(λ) to which we add the constraint c at position K. These

two quantities are derived in Appendix B1. All the factors in (2.8) have

mathematically closed forms, so that the approximated posterior of the

hyperparameter vector can be extensively written as:

p̃(η|D) ∝ exp

(
n∑

i=1

gi(ξ
∗
cc(λ))−

1

2

(
ξ∗cc(λ)− µξ

)⊤
Q(λ)

(
ξ∗cc(λ)− µξ

))

×|Q(λ)| 12 |Σ∗
c(λ)|

1
2λ

ν
2
−1δ

ν
2
+aδ−1 exp

(
− δ(bδ + νλ/2)

)
. (2.9)

Note that δ can be integrated out from (2.9) to obtain the following

approximated marginal posterior density of the penalty parameter:

p̃(λ|D) ∝ exp

(
n∑

i=1

gi(ξ
∗
cc(λ))−

1

2

(
ξ∗cc(λ)− µξ

)⊤
Q(λ)

(
ξ∗cc(λ)− µξ

))

×|Q(λ)| 12 |Σ∗
c(λ)|

1
2λ

ν
2
−1
(
bδ + νλ/2

)−(ν/2+aδ)
. (2.10)

In addition, the conditional posterior of δ is given by (δ|λ,D) ∼ G(ν/2+
aδ, bδ + (νλ)/2) and does not directly depend on the data.

Next, our aim is to find a sub-region in the domain of p̃(η|D) that

supports most of the posterior probability mass. In that endeavor, we

use an equidistant grid ℵλ = {λj}m1
j=1 of size m1 = 10 in the domain of

p̃(λ|D) that supports approximately 95% of the posterior mass. Then,

for each point λj ∈ ℵλ, we construct a regular grid of length m2 = 5

with starting and ending values corresponding to the 2.5th and 97.5th

percentiles respectively of the G(ν/2 + aδ, bδ + (νλj)/2) distribution.

This enables us to construct a grid ℵλ,δ =
(
λ(m), δ(m)

)M
m=1

∈ R2
++ with

M = m1 × m2 points that will be used to approximate the posterior

distribution of spline and regression parameters.
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2.3.7 Multivariate posterior of latent variables

In Sections 2.3.3-2.3.5, we have seen that the conditional posterior distri-

bution of the vector of spline and regression parameters for a given ξK =

c and λ can be approximated by a Gaussian density. By abuse of nota-

tion p̃G(ξ−K |ξK = c, λ,D) = p̃G(ξ−K |λ,D) = Ndim(ξ)−1

(
ξ∗c(λ),Σ

∗
c(λ)

)
.

The posterior joint distribution of ξ−K can be written as:

p(ξ−K |D) =

∫ +∞

0

∫ +∞

0
p(ξ−K , λ, δ|D) dλ dδ

=

∫ +∞

0

∫ +∞

0
p(ξ−K |λ,D) p(λ, δ|D) dλ dδ. (2.11)

Given our grid coordinates and their associated weights ∆m = ∆λ(m) ×
∆δ(m) being the area of the parallelograms in the grid, we can approxi-

mate (2.11) by numerical integration:

p̃(ξ−K |D) =
∑

m

p̃G(ξ−K |λ(m),D) p̃(λ(m), δ(m)|D) ∆m.

The weights of the Gaussian densities in the sum can be normalized:

ωm =
p̃(λ(m), δ(m)|D) ∆m∑
m p̃(λ

(m), δ(m)|D) ∆m
,

to improve the approximation to the approximate joint posterior distri-

bution of ξ−K , yielding:

p̂(ξ−K |D) =
∑

m

ωm Ndim(ξ)−1

(
ξ∗c(λ

(m)),Σ∗
c

(
λ(m)

))
. (2.12)

Equation (2.12) is a Gaussian mixture density with mean and variance-

covariance matrix given by (see e.g. Frühwirth-Schnatter, 2006):

E(ξ−K |D) =
∑

m

ωm ξ∗c(λ
(m)),

V (ξ−K |D) =
∑

m

ωm Σ∗
c

(
λ(m)

)
+
∑

m

ωm

(
ξ∗c(λ

(m))− E(ξ−K |D)
)

×
(
ξ∗c(λ

(m))− E(ξ−K |D)
)⊤
.
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These quantities can be used to compute pointwise estimates and ap-

proximate credible intervals for variables in ξ. In the next section, we

show how to derive credible intervals for complex functionals of the vec-

tor of spline and regression parameters.

2.3.8 Credible intervals for latent variables

The flexibility of the Laplace-P-spline model can be exploited to com-

pute pointwise credible intervals for complicated functions of spline and

regression parameters and thus go beyond a marginal analysis. Con-

struction of joint credible bands for subsets of ξ is also discussed in

Sørbye and Rue (2011). In this section, we focus on the derivation of

pointwise credible intervals for the baseline survival function S0(t) and

for the population survival function given in (2.1). The “Delta method”

will serve as the main mechanism to derive approximate credible inter-

vals. Using a log(− log(·)) transform of the baseline survival function,

we recover:

G0(θ
c|t) = log

(
− logS0(t)

)
= log

(
j(t)∑

j=1

exp
(
θ⊤b(sj)

)
∆j

)
, (2.13)

where θc = (θ1, . . . , θK−1)
⊤ and θK = c as the last B-spline coeffi-

cient is fixed for identifiability purposes in the cure promotion time

model. Using the strategy presented in Section 2.3.3, one has a Gaussian

approximation to the conditional posterior of ξ, namely p̃G(ξ|λ,D) =

Ndim(ξ)

(
ξ∗(λ),Σ∗(λ)

)
. Taking into account the constraint on the last B-

spline coefficient θK = c, we recover the following conditional posterior

distribution for the vector θc:

p̃G(θ
c|λ,D) = NK−1

(
µθc(λ),Σθc(λ)

)
,

where µθc(λ) = (ξ∗c,1(λ), . . . , ξ
∗
c,K−1(λ))

⊤ and Σθc(λ) is a K − 1 dimen-

sional square matrix corresponding to the first K − 1 rows and columns

of Σ∗
c(λ). Using similar techniques as in Section 2.3.7, we can show that

the approximated joint posterior distribution for the spline vector is:

p̂(θc|D) =
∑

m

ωm NK−1

(
µθc(λ(m)),Σθc

(
λ(m)

))
. (2.14)
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We thus recover in (2.14) a multivariate Gaussian mixture for which

the mean and variance-covariance matrix are analytically known (cf.

Section 2.3.7). Let us denote by θm
c,0 = µθc

(
λ(m)

)
the mean of mixture

component m. Using a first-order Taylor expansion of G0(·|t) around

θm
c,0, one gets:

G0,m(θc|t) ≈ G0(θ
m
c,0|t) + (θc − θm

c,0)
⊤∇θcG0(θ

m
c,0|t), (2.15)

where ∇θcG0(·|t) denotes the gradient of G0 with respect to θc. Com-

bining (2.14) with (2.15) suggests to approximate the marginal pos-

terior of G0,m(θc|t) by the following univariate Gaussian distribution

(G0,m(θc|t)|D) ∼ N1

(
G0(θ

m
c,0|t),∇θcG0(θ

m
c,0|t)⊤Σθc

(
λ(m)

)
∇θcG0(θ

m
c,0|t)

)
.

Accordingly, the posterior density of G0(θ
c|t) across all mixture com-

ponents can in turn be approximated by the mixture
(
G0(θ

c|t)|D
)
≈

∑
m ωm N1

(
G0(θ

m
c,0|t),∇θcG0(θ

m
c,0|t)⊤Σθc

(
λ(m)

)
∇θcG0(θ

m
c,0|t)

)
. It fol-

lows that a (1−α)×100% credible interval can be obtained numerically

by finding C such that:

∫

C
p
(
G0(θ

c|t)|D
)
dG0(θ

c|t) = 1− α.

To construct credible intervals for the population survival function given

in (2.1) with a given profile of covariates, the procedure is the same ex-

cept that the function of interest has the following form after a log(− log(·))
transform:

G0(ξc|x, z, t) = β0 + x⊤β

+ log

(
1− exp

(
−

j(t)∑

j=1

exp
(
θ⊤b(sj)

)
∆j

)exp(z⊤γ))
,

where ξc = (θ1, . . . , θK−1, β0, . . . , βp, γ1, . . . , γl)
⊤. Using a first-order

Taylor expansion of G0 about the mean of each mixture component

ξmc,0 = ξ∗c(λ
(m)), it can be shown using our previous arguments that:

(
G0(ξc|x, z, t)|D

)
≈

∑

m

ωm N1

(
G0(ξ

m
c,0|x, z, t),

∇ξcG0(ξ
m
c,0|x, z, t)⊤Σ∗

c

(
λ(m)

)
∇ξcG0(ξ

m
c,0|x, z, t)

)
.
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2.3.9 Cure prediction

Another quantity of interest in the promotion time cure model is the

probability that a subject is cured given that (s)he has survived until a

certain point in time t, say. Mathematically, one has:

P (T = +∞|T ≥ t,x, z) = exp
(
− exp(β0 + x⊤β)S0(t)

exp(z⊤γ)
)
.

Again, taking a log(− log(·)) transform and using a first-order Taylor

expansion, it can be shown that the resulting approximation to the pos-

terior distribution is a Gaussian mixture, the only difference being in the

gradient ∇ξcG0(ξ
m
c,0|x, z, t). The gradients required to obtain the above

credible intervals have been computed with analytic forms provided in

Appendix B2. The reader is also referred to the curelps() function of

the blapsr package in Chapter 5 which implements the LPS method for

inference in promotion time cure models.

2.4 Simulation study

The aim of this section is to implement a simulation study to assess

the statistical performance of the LPS approach (cf. Section 2.3) in the

promotion time cure model. The simulation setting is exactly the same

as in Bremhorst and Lambert (2016) when the follow-up is sufficiently

long except that we choose different cure and censoring rates, as well

as more B-splines in the basis as enabled by the numerical efficiency of

our method. Our methodology can also be applied when the follow-up

period is not sufficiently long, provided that we account for identifiability

issues. Indeed, as suggested in Bremhorst and Lambert (2016), when

the follow-up of any susceptible subject is not long enough to observe its

failure, then covariate effects are identifiable under the condition that

the covariates are not simultaneously present in the probability to be

cured and in the proportional hazards model parts.

The regressors consist in normal variates xi1 = zi1 ∼ N (0, 1) for i =

1, . . . , n and discrete covariates following a Bernoulli distribution xi2 =

zi2 ∼ Bern(0.5), i = 1, . . . , n to which we subtract 0.5 to obtain mean-

centered covariates. The baseline distribution to generate latent event

times is chosen to be a Weibull with mean 8 and variance 17.47. The

regression coefficients in the Cox proportional hazards model are set to
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γ1 = 0.40 and γ2 = −0.40, while the coefficients β0, β1 and β2 are cali-

brated to get two different percentages for the proportion of cured sub-

jects, namely around 20% and 30%. Finally, censoring is either governed

by a uniform distribution on [20, 25] or by a Weibull with shape param-

eter 3 and scale parameter 25. We redirect the reader to Bremhorst and

Lambert (2016), Section 5.1 for more details concerning the generation

of latent event times and censoring times. We use the Laplace-P-spline

model with the above covariates and 25 cubic B-splines in [0, tu] where

the upper bound of the follow-up is fixed to tu = 25. A third order

penalty on the coefficients of adjacent B-splines is used to counterbal-

ance their flexibility. Furthermore, the last B-spline coefficient is fixed

to θK = 10 to translate the “sufficiently long follow-up hypothesis” in

cure models, thereby avoiding identifiability problems. Simulations are

performed on S = 500 replicates of sample size n = 300 and n = 600

with results reported in Tables 2.1 and 2.2.

Cure Setting IMSE Parameter Bias CP90% CP95% ESE RMSE

β0 = 0.75 0.022 90.4 95.4 0.101 0.103
β1 = 0.80 0.035 89.8 94.0 0.119 0.124

1 0.023 β2 = −0.50 -0.039 89.4 93.8 0.175 0.179
γ1 = 0.40 -0.056 89.0 93.6 0.146 0.156
γ2 = −0.40 0.050 89.0 93.2 0.218 0.223

20%
β0 = 0.75 0.016 90.8 95.4 0.112 0.113
β1 = 0.80 0.045 91.8 96.0 0.137 0.144

2 0.030 β2 = −0.50 -0.036 93.0 97.2 0.200 0.203
γ1 = 0.40 -0.071 90.4 93.6 0.173 0.187
γ2 = −0.40 0.047 92.4 97.0 0.248 0.252

β0 = 0.30 0.010 89.4 94.6 0.092 0.092
β1 = 1.00 0.034 89.6 95.0 0.123 0.127

1 0.017 β2 = −0.75 -0.015 89.8 94.2 0.173 0.173
γ1 = 0.40 -0.057 88.6 94.6 0.143 0.154
γ2 = −0.40 0.042 88.8 95.8 0.210 0.214

30%
β0 = 0.30 -0.001 91.2 94.8 0.103 0.103
β1 = 1.00 0.047 91.2 95.6 0.136 0.143

2 0.025 β2 = −0.75 -0.032 91.2 96.8 0.194 0.197
γ1 = 0.40 -0.072 89.0 94.0 0.175 0.189
γ2 = −0.40 0.038 92.6 95.8 0.242 0.245

Table 2.1: Simulation results for S = 500 and n = 300. Setting 1: Cen-

soring times generated from a U(20, 25) distribution; Setting 2: Censor-

ing times generated from a Weibull(3, 25) distribution.
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We compute the integrated mean square error (IMSE), bias, empiri-

cal standard error (ESE) and root mean square error (RMSE) of the

posterior (mixture) mean taken as a pointwise estimator of the regres-

sion coefficients in the cure probability and survival parts. Coverage

probabilities (CP) of 90% and 95% credible intervals are also given. A

negligible bias is observed across the different cure and censoring set-

tings. Furthermore, the estimated coverage probabilities are reasonably

close to the nominal values of 90% and 95% in each setting. We also

notice that, as expected, the ESE and RMSE decrease with sample size.

Cure Setting IMSE Parameter Bias CP90% CP95% ESE RMSE

β0 = 0.75 0.016 88.4 94.2 0.069 0.071
β1 = 0.80 0.029 91.0 95.4 0.076 0.081

1 0.010 β2 = −0.50 -0.016 91.0 94.2 0.119 0.119
γ1 = 0.40 -0.054 87.4 93.2 0.099 0.112
γ2 = −0.40 0.039 92.0 95.8 0.143 0.148

20%
β0 = 0.75 0.009 91.6 96.6 0.074 0.074
β1 = 0.80 0.033 89.2 94.8 0.099 0.104

2 0.014 β2 = −0.50 -0.020 89.6 95.6 0.140 0.141
γ1 = 0.40 -0.054 88.0 94.4 0.120 0.131
γ2 = −0.40 0.037 89.6 95.6 0.173 0.177

β0 = 0.30 0.002 90.0 95.0 0.064 0.064
β1 = 1.00 0.021 90.6 94.0 0.087 0.089

1 0.010 β2 = −0.75 -0.013 90.0 94.6 0.123 0.123
γ1 = 0.40 -0.037 88.6 93.8 0.104 0.110
γ2 = −0.40 0.028 90.2 95.4 0.147 0.149

30%
β0 = 0.30 0.001 90.6 94.8 0.074 0.074
β1 = 1.00 0.030 90.0 95.2 0.099 0.104

2 0.015 β2 = −0.75 -0.014 90.8 95.8 0.140 0.140
γ1 = 0.40 -0.055 85.8 92.6 0.125 0.137
γ2 = −0.40 0.030 89.4 94.0 0.179 0.181

Table 2.2: Simulation results for S = 500 and n = 600. Setting 1: Cen-

soring times generated from a U(20, 25) distribution; Setting 2: Censor-

ing times generated from a Weibull(3, 25) distribution.

Coverage estimates of 90% credible intervals for the baseline survival

function are reported in Table 2.3 with an asterisk as superscript when

the estimated coverage is incompatible with the nominal value at the

95% level. Globally, the estimated coverage probability across all quan-

tiles is close to the 90% nominal value. Also, the poor coverage in the

5% quantile when n = 300 improves with growing sample size.
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n=300 Cure Cens. Setting 5% 15% 35% 50% 65% 75% 85% 95%

20% 20% 1 90.6 91.6 89.8 88.2 89.0 88.4 88.6 88.0

20% 23% 2 87.8 91.0 88.4 89.0 89.4 91.2 90.4 92.0

30% 30% 1 87.8 89.0 91.0 91.4 90.6 90.0 88.2 87.2∗

30% 33% 2 82.6∗ 88.6 88.4 89.0 88.6 89.4 88.0 90.8

n=600 Cure Cens. Setting 5% 15% 35% 50% 65% 75% 85% 95%

20% 20% 1 90.4 92.8∗ 88.4 90.4 91.2 91.4 88.8 88.4

20% 23% 2 87.6 89.0 88.8 89.8 87.0∗ 87.8 85.2∗ 88.0

30% 30% 1 91.8 92.6 90.0 89.8 91.0 91.8 90.2 90.4

30% 33% 2 86.6∗ 91.0 88.8 87.2∗ 86.4∗ 87.6 88.2 88.6

Table 2.3: Coverage estimates of 90% credible intervals using first-order

Taylor approximations for the baseline survival function at selected

quantiles (5%, 15%, 35%, 50%, 65%, 75%, 85%, 95%) of T under the pro-

motion time cure model. Setting 1: Censoring times generated from

a U(20, 25) distribution; Setting 2: Censoring times generated from a

Weibull(3, 25) distribution.

In Table 2.4, we report the coverage estimates of 90% credible intervals

for the population survival function at selected quantiles with the con-

tinuous covariate fixed to 0.1 and the binary covariate to 0.5. Again,

the constructed credible intervals show good performances even for the

5% and 95% quantiles.

n=300 Cure Cens. Setting 5% 15% 35% 50% 65% 75% 85% 95%

20% 20% 1 89.8 88.4 90.2 91.8 91.8 89.8 88.6 89.6

20% 23% 2 87.6 89.2 90.0 90.8 91.2 90.8 90.6 92.8∗

30% 30% 1 90.8 90.2 89.0 89.4 90.8 92.2 91.0 90.8

30% 33% 2 90.2 89.4 89.6 89.6 91.0 90.6 90.2 91.4

Table 2.4: Coverage estimates of 90% credible intervals using first-order

Taylor approximations for the population survival function at selected

quantiles of T when x = 0.1 and z = 0.5. Setting 1: Censoring times

generated from a U(20, 25) distribution; Setting 2: Censoring times from

a Weibull(3, 25) distribution.
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In Figure 2.1, the solid line is the target baseline survival distribution for

the susceptible corresponding to the Weibull with mean 8 and standard

deviation 4.18. The gray curves are estimates of S0(t) under each repli-

cate and the dashed curve corresponds to the pointwise median of the

500 estimated baseline survival functions. Globally, we can say that the

Laplace-P-spline approach provides accurate estimates of the baseline

distribution with little variability around the target.
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n=600; cure: 20%; censoring: 20% n=600; cure: 20%; censoring: 23%
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Figure 2.1: Estimation of the baseline distribution S0(t) for S = 500

replications, (one gray curve per dataset) and sample size n = 600. In

the left column the censoring rate is governed by a U(20, 25) distribution
and in the right column it is governed by a Weibull(3, 25) distribution.

The solid line is the true function and the dashed line is the pointwise

median of the 500 estimated curves.

For the sake of assessing the algorithmic performance of our approach,

we implement a computational speed comparison with a MCMC algo-

rithm. The competitor is taken to be a Metropolis-within-Gibbs algo-

rithm with blockwise sampling for which we compute a chain of length

23, 000 and a burnin of length 3, 000 to explore the joint posterior of ξ.
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Under the same simulation settings, we observe a computational speed-

up of a factor 15 with the Laplace-P-spline approach. It is also worth

noting that most of the computational intensive tasks in our MCMC

algorithm are written in Fortran language and called via R, while our

Laplace-P-spline algorithm is exclusively coded in R language, such that

the mentioned computational gain is conservative and under-evaluated.

2.5 Real data analysis

2.5.1 Application to malignant melanoma data

In this section, we illustrate the LPS methodology with the analysis of

a malignant melanoma survival dataset (Andersen et al., 1993). The

dataset concerns 205 patients affected by skin cancer and operated for

malignant melanoma at Odense University Hospital in Denmark during

1962-1977. The response of interest is the time (in years) elapsed be-

tween operation and death from malignant melanoma. The covariates

are Age at operation (in years), Gender (1=M, 0=F), Tumor Thickness

(in mm) and a dichotomous factor (Ulcer) indicating presence of ulcer-

ation (1=presence, 0=absence) at baseline. Among the 205 patients,

57 died from malignant melanoma while the remaining 148 are right

censored. This dataset was first investigated using single-factor analysis

techniques (Drzewiecki, Ladefoged and Christensen, 1980; Drzewiecki,

Christensen, Ladefoged and Poulsen, 1980) and a Cox regression model

(Drzewiecki and Andersen, 1982). More recently, Li and Lin (2009) used

the melanoma dataset to illustrate a semiparametric mixture model,

while Chyong-Mei and Chen-Hsin (2016) implemented it to highlight a

heteroscedastic transformation cure model. We propose to use the pro-

motion time approach in which the covariates will simultaneously affect

the probability of being cured as well as the time to event for susceptible

subjects. The use of the same covariates in the two parts of the model

is not problematic when it comes to inference as a plateau is observed

in the Kaplan-Meier curve, suggesting a sufficiently long follow-up.

We use 50 B-splines on [0, tu] and follow a common choice in the litera-

ture to specify tu as the largest observed survival time (here tu = 15.236).

The algorithm in pure R code takes ≈ 15 seconds to obtain estimates

for all B-spline coefficients, the posterior standard deviation (sdpost) and

95% quantile-based credible intervals for the regression coefficients.
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The first estimation results (not detailed here) suggest that ulceration

has a significant effect on the probability to be “cured”, i.e. of not ob-

serving a relapse whatever the duration of the follow-up, while Tumor

Thickness significantly affects the time to event for susceptible subjects.

The model is then estimated a second time (see Table 2.5) by omitting

Age and Gender as they have no significant effect in the model (condi-

tionally on thickness and ulceration). The results suggest that ulceration

has a negative effect on the probability to be cured. Furthermore, Tu-

mor Thickness at time of surgery is an important factor affecting the

time necessary to detect a new tumor. In fact, a large tumor at base-

line may already be a sign of metastatic occurrence such that after an

incomplete removal of cancer cells, a relapse is more likely to occur in

a shorter period of time (conditionally on other covariates), although it

has no significant effect on the long term risk of relapse.

Parameters Estimates CI 95% sdpost

Intercept -1.589 [-2.226; -0.948] 0.326
ϕ(x) Thickness 0.067 [-0.010; 0.142] 0.039

Ulcer 1.096 [ 0.370; 1.819] 0.370

Thickness 0.111 [ 0.017; 0.201] 0.047

1− S0(t)
exp(z⊤γ) Ulcer 0.327 [-0.619; 1.278] 0.484

Table 2.5: Posterior mixture mean for each regression parameter us-

ing 50 B-splines for the baseline log-hazard in the reduced model, the

95% quantile-based approximate credible intervals (CI) and the poste-

rior standard deviation. ϕ(x) is minus the log of the probability to be

cured and 1 − S0(t)
exp(z⊤γ) represents the time necessary for a cell to

produce a detectable tumor mass.

Our analysis also investigates to what extent ulceration affects the prob-

ability that a patient is cured given that (s)he has survived until a given

time reference t. This conditional probability is estimated in Table 2.6

for a median value of Tumor Thickness (1.94 mm) and approximate

90% credible intervals are also provided. Figure 2.2 gives a graphical

representation of the pointwise and set estimates for these probabilities.

We see that in presence of an ulcer, the estimated probability that a

patient is cured given that (s)he has survived until t is smaller than

the estimate corresponding to ulcer absence, regardless of the reference

time values. Also, we see that the estimated probabilities increase with
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t, simply corroborating the idea that the longer a patient has survived

(with or without an ulcer), the larger his/her chances of being cured.

Probability to be cured given that T≥ t

No Ulceration Ulceration
t Estimates CI 90% Estimates CI 90%

2 0.812 [0.697; 0.887] 0.538 [0.404; 0.676]
4 0.855 [0.735; 0.924] 0.631 [0.491; 0.799]
6 0.904 [0.773; 0.961] 0.745 [0.596; 0.912]
8 0.944 [0.793; 0.986] 0.849 [0.690; 0.974]

Table 2.6: Pointwise estimates and approximate 90% credible intervals

for the conditional probability to be cured given that T ≥ t for t ∈
{2, 4, 6, 8} (in years) with and without ulceration and for a median value

of Tumor Thickness.
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Figure 2.2: Evolution over time t of the probability to be cured P (T =

+∞|T ≥ t, TT = 1.94) for a median Tumor Thickness (TT) represented

by the solid line for two scenarios, no ulceration (left) and ulceration

(right). The gray surface represents the approximate 90% pointwise

credible intervals.

2.5.2 Application to oropharynx carcinoma data

We implement a second data analysis using data from Kalbfleisch and

Prentice (2011) on oropharynx carcinoma. The dataset comes from a

clinical trial achieved by the Radiation Therapy Oncology group involv-

ing patients from six clinics suffering from squamous cell carcinoma lo-

cated in different sites of the mouth and throat. There are 195 patients

randomly assigned in two arms at the moment of entry in the study:
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(1) radiation therapy alone (standard) or (2) radiation therapy with a

chemotherapeutic agent (special). To highlight the use of our model,

we focus on 130 patients (among which 38 are censored) with cancer

located in the pharyngeal tongue and tonsillar fossa part of the mouth.

We retain the covariates Age, Sex (1=M, 0=F), Treatment (1=special or

0=standard) and tumor staging (Tumor) for explaining survival times.

For tumor staging, we follow Lopes and Bolfarine (2012) and categorize

the variable as Tumor=0 if primary tumor and Tumor=1 if massive tu-

mor. As in the previous application, we use 50 B-splines in the interval

ranging from 0 to the largest observed survival time measured in years

(4.99).

The main objective of this analysis is to assess the effect of the two types

of treatments on survival times of patients accounting for tumor staging.

The estimated Kaplan-Meier curve given in Figure 2.3 (left panel) shows

a plateau, indicating the presence of a cured fraction and thus justifying

our choice to let the covariates influence jointly the probability to be

cured and the time to event for susceptible patients. In Table 2.7, we

report the posterior mixture mean, the 90% quantile-based approximate

credible interval and the posterior standard deviation. We see that Tu-

mor is the only variable having a negative and significant effect on the

probability to be cured, such that presence of a massive tumor decreases

the chances of being cured from oropharynx cancer. In addition, Treat-

ment has a significant impact on a recurrence timing (conditionally on

other covariates), but no significant effect on the risk of recurrence in

the long term.

In Figure 2.3 (right panel), we show the estimated population survival

functions when the model is estimated without Age and Sex and by only

accounting for the effects of Tumor and Treatment on, respectively, the

cancer recurrence probability and on its timing for susceptible subjects.

Whether we consider a standard or special treatment, we see that the

risk of cancer recurrence only changes with tumor status, with a higher

risk when a massive tumor is present as compared to a primary tumor.

In addition, we see that the type of treatment mainly impacts the speed

at which the recurrence arises for susceptible patients. Finally, Figure

2.4 compares the estimated population survival functions obtained with

the Laplace-P-spline model (blue curve) against Kaplan-Meier curves (in
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black) for each tumor staging and treatment configuration. In each sit-

uation, the Laplace-P-spline model provides survival curves that appear

to be appropriate smoothed versions of the Kaplan-Meier estimates.

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (in years)

0 1 2 3 4 5
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Time (in years)

E
st

im
a

te
d

 p
o

p
u

la
tio

n
 s

u
rv

iv
a

l

primary−standard

massive−standard

primary−special

massive−special

Figure 2.3: (Left panel) Kaplan-Meier estimated curve from the orophar-

ynx dataset. A cross indicates a censored patient. (Right panel) Esti-

mated population survival functions for different tumor-treatment con-

figurations.

Parameters Estimates CI 90% sdpost

Intercept -0.323 [-1.436; 0.788] 0.676

ϕ(x) Age 0.008 [-0.010; 0.025] 0.011
Sex 0.291 [-0.148; 0.727] 0.266
Tumor 0.510 [ 0.020; 0.998] 0.297
Treatment -0.315 [-0.733; 0.101] 0.253

Age 0.006 [-0.012; 0.022] 0.010

1−S0(t)exp(z⊤γ) Sex -0.704 [-1.253; -0.156] 0.334

Tumor 0.356 [-0.321; 1.031] 0.411

Treatment 0.763 [ 0.231; 1.292] 0.323

Table 2.7: Posterior mixture mean, 90% quantile-based approximate

credible interval (CI) and posterior standard deviation for each regres-

sion parameter of the promotion time model.

2.6 Discussion

In this chapter, we introduced a novel methodology for fast Bayesian

inference in semiparametric survival models by coupling P-splines with

Laplace approximations. Our approach opens up promising perspectives
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for inference in cure survival models as it enables to obtain pointwise and

set estimators for non-trivial functions of latent variables with a drastic

computational speed-up as compared to existing MCMC methods.
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Figure 2.4: Estimated population survival functions from the Laplace-

P-spline model (blue) versus Kaplan-Meier curves (black) and their 95%

confidence interval (dashed) for different tumor status and treatment.

Even though the Laplace approximation mechanisms presented in this

work share some similarities with the classic INLA approach (Rue et al.,

2009), our methodology is sharply contrasted with the latter in many

respects. In particular, our modeling strategy involves a specification of

the prior of the roughness penalty parameter that is robust to the choice

of hyperparameters (Jullion and Lambert, 2007). In the standard INLA

approach, that concern is not addressed with the implication that poste-

rior estimation can be sensitive towards the hyperparameter prior chosen

by the user. In addition, our work goes beyond the treatment of univari-

ate posterior marginal distributions by deriving reliable approximations

to the joint posterior distributions of spline and regression parameters
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for which the mean and covariance matrix have known analytic forms.

Another major difference is that the dimension of our latent vector only

grows with the number of regressors and not with sample size, impact-

ing directly the underlying algorithmic efficiency when dealing with large

datasets.

A practical limitation may arise when dealing with a hyperparameter

vector of large dimension. This might be the case for instance in additive

regression models, where the number of roughness penalty parameters

is equal to the number of smooth functions to be estimated, implying

a much larger computational cost for the grid strategy recommended in

Section 2.3.6. However, even for a large number of hyperparameters, we

expect our approach to be much faster than existing MCMC techniques,

which would require long computation times in such situations.





CHAPTER 3
Laplace-P-splines for
approximate Bayesian inference
in additive models
This chapter is based on the discussion paper: Gressani, O. and Lambert, P. (2020a).

The Laplace-P-spline methodology for fast approximate Bayesian inference in additive

partial linear models, ISBA Discussion papers, DP-2020/20. http://hdl.handle.

net/2078.1/230728

3.1 Motivation

Multiple linear regression is among the cornerstones of statistical model

building. Whether from a descriptive or inferential perspective, it is

certainly the most widespread approach to analyze the influence of a

collection of explanatory variables on a response. The straightforward

interpretability in conjunction with the simple and elegant mathematics

of least squares created room for a well appreciated toolbox with an ubiq-

uitous presence in various scientific fields. There are two rather strong

assumptions underlying the multiple linear regression model that re-

strain their use in most practical applications. First a linear dependence

is assumed between the mean response and each covariate. Second, the

response variable is often assumed to be continuous with a Gaussian dis-

tribution. To circumvent these limitations, several extensions have been

proposed in the literature giving birth to more general model classes. In

this chapter, the linear dependence assumption of the response variable

65
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with respect to the covariates is relaxed and replaced by an additive ar-

chitecture of univariate smooth functions of predictor variables. We keep

the assumption of a continuous and Gaussian response until Chapter 4,

where generalized additive models are introduced.

The dawn of additive models traces back to Friedman and Stuetzle

(1981) who suggest a projection pursuit regression technique in which

the response is approximated by a sum of univariate functions of one-

dimensional projections of the vector of covariates. The paper by Buja

et al. (1989) investigates a class of smoothers in additive models and

studies the properties of the iterative backfitting algorithm proposed

in Breiman and Friedman (1985) as the Alternating Conditional Expec-

tation algorithm. Backfitting is a well-known tool for estimating the

additive components of the model and imposed itself as a benchmark

strategy in the literature with successful applications. Tjøstheim and

Auestad (1994) and Linton and Nielsen (1995) independently suggested

an alternative non-recursive estimation plan that consists in estimating

the regression surface by a multidimensional smoother in a first step

and integrate it in a second step to obtain an estimator of the marginal

smooth function of interest, a method coined “marginal integration”.

Complete book-length treatment of additive models are found in Hastie

and Tibshirani (1990) and more recently in Wood (2017).

We adapt the Laplace-P-spline (LPS) approach to additive models with

Gaussian errors and develop a fast and flexible methodology for approx-

imate Bayesian inference in this model class. Great efforts have been

invested in the derivation of analytical formulas for the gradient and Hes-

sian of the posterior penalty vector, which offers a nonnegligible compu-

tational gain when exploring the posterior penalty space. Moments of a

skew-normal family of random variables are used to accurately approxi-

mate the posterior distribution of penalty parameters, thereby capturing

the inherent asymmetric patterns. The amlps() routine of the blapsr

package (cf. Chapter 5) is based on the methodology presented in this

chapter and can be used to fit additive partial linear models with LPS.

In Section 3.2, the Bayesian-P-spline additive model is introduced and

a method is proposed to overcome identifiability problems. In Section

3.3 the priors on the penalty parameters are defined and the likelihood

function is derived together with the conditional posterior distribution of
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the vector of regression and spline parameters. Section 3.4 is dedicated

to the posterior of the hyperparameter vector. The nuisance parameters

are integrated out and the gradient and Hessian of the penalty vector

are obtained in closed-form. Section 3.5 proposes a strategy to explore

the posterior penalty vector based on skew-normal matching moments.

In Section 3.6 the approximate posterior of the latent vector is derived

and Section 3.7 covers the derivation of pointwise credible intervals for

marginal latent variables and smooth functions. Section 3.8 implements

a simulation study to assess the performance of the proposed method-

ology and Section 3.9 is devoted to the application of LPS on mortality

data. Finally, Section 3.10 concludes the chapter.

3.2 The Bayesian P-spline additive model

3.2.1 Additive structure and priors

Let us consider the set D = {(yi,xi, zi)
n
i=1} of n independent obser-

vations, where yi is a response variable, xi = (xi1, . . . , xiq)
⊤ a vector

of continuous covariates and zi = (zi1, . . . , zip)
⊤ a vector of additional

continuous or categorical covariates. Each covariate group is assumed

deterministic such that we are in a fixed design. The additive models

considered in this chapter are written as follows:

yi = β0 + β1zi1 + · · ·+ βpzip + f1(xi1) + · · ·+ fq(xiq) + εi, (3.1)

for i = 1, . . . , n, with regression coefficients β = (β0, . . . , βp)
⊤ and

{εi}ni=1 a sequence of independent and Gaussian errors with mean 0,

unknown variance σ2 < +∞ and precision τ = 1/σ2. The above model

is also referred to as the additive partial linear model (explored among

others in Opsomer and Ruppert, 1999; Fan and Li, 2003; Liang et al.,

2008; Ma and Yang, 2011) as one part is specified parametrically and the

remaining additive components are unknown smooth functions. Follow-

ing the P-spline approach of Eilers and Marx (1996), the additive smooth

components fj , j = 1, . . . , q are approximated by a large number of cu-

bic B-splines and a discrete penalty on neighboring spline coefficients is

imposed to counterbalance the roughness of the fit:

fj(xij) =

K∑

k=1

θjkbjk(xij), j = 1, . . . , q, (3.2)
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where the number K of basis functions bjk(·) is the same for every fj .

The vector of B-spline amplitudes associated to function fj is given by

θj = (θj1, . . . , θjK)⊤, while the set of all spline coefficients in the additive

model is θ = (θ⊤
1 , . . . ,θ

⊤
q )

⊤ and the vector of B-spline basis functions

at xij is bj(xij) = (bj1(xij), . . . , bjK(xij))
⊤. The roughness penalty on

finite differences of the coefficients of adjacent B-spline coefficients is

θ⊤P(λ)θ, with block diagonal matrix P(λ) that can be expressed com-

pactly using a Kronecker product:

P(λ) := diag(λ1, . . . , λq)⊗ P =




λ1P 0 . . . 0

0 λ2P . . . 0
... . . .

. . . 0

0 . . . 0 λqP



,

where λ = (λ1, . . . , λq)
⊤ is a vector of positive penalty parameters and

P = D⊤
r Dr + ϵIK is a penalty matrix resulting from the product of

rth order difference matrices Dr of dimension (K − r) ×K. Adding a

diagonal perturbation ϵIK (with ϵ = 10−6, say) ensures that P is a full

rank matrix. In a Bayesian setting, Lang and Brezger (2004) suggest

to interpret the roughness penalty as a multivariate Gaussian prior on

the spline coefficients θ|λ, τ ∼ Ndim(θ)

(
0, (τP(λ))−1

)
. Also, a Gaussian

prior is imposed on the regression coefficients β|τ ∼ Ndim(β)(0, (τVβ)
−1)

(see for instance Jackman, 2009 p. 104 or O’Hagan et al., 2004) with

matrix Vβ = ζIp+1 and small precision (say ζ = 10−5). The latent vector

of the model is written as ξ = (β⊤,θ⊤)⊤ and includes the regression and

spline coefficients with prior distribution ξ|λ, τ ∼ Ndim(ξ)

(
0, (τQλ

ξ )
−1
)

and the following matrix:

Qλ
ξ := Qξ(λ) =

(
Vβ 0

0 P(λ)

)
.

Without loss of generality, the covariates zi are mean centered. Let

z̄l = n−1
∑n

i=1 zil, l = 1, . . . , p and write the centered design matrix Z

and B-spline matrices Bj for j = 1, . . . , q as:

Z =



1 (z11 − z̄1) . . . (z1p − z̄p)
...

...
...

...

1 (zn1 − z̄1) . . . (znp − z̄p)


 , Bj =



bj1(x1j) . . . bjK(x1j)

...
...

...

bj1(xnj) . . . bjK(xnj)


 .
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3.2.2 Identifiability

The additive model in (3.1) suffers from an identifiability issue. This

can be easily illustrated through the simple model E(y) = β0 + f(x).

Assume our goal is to estimate the expected value E(y) from a sample

{(xi, yi)}ni=1. Let c be any arbitrary constant and denote by β̃0 = β0− c

and f̃(x) = f(x)+c. It follows that E(y) = β̃0+f̃(x) for any c, such that

there exists an infinite number of configurations for β̃0 and f̃ yielding

the same expected value, meaning that the model “parameters” cannot

be uniquely identified and estimated for a given data set. To reach an

identifiable model, we follow an approach similar to Durbán and Currie

(2003) and define the centered B-spline matrices:

B̃j = Bj − (1n1
⊤
L/L)B̆j , j = 1, . . . , q,

where 1n and 1L are column vectors of ones of length n and L respec-

tively and B̆j is a B-spline matrix computed on a fine grid x̆1j , . . . , x̆Lj
of equidistant values on the domain of fj . The centered matrix can be

written as:

B̃j =



bj1(x1j)− 1

L

∑L
l=1 bj1(x̆lj) . . . bjK(x1j)− 1

L

∑L
l=1 bjK(x̆lj)

...
...

...

bj1(xnj)− 1
L

∑L
l=1 bj1(x̆lj) . . . bjK(xnj)− 1

L

∑L
l=1 bjK(x̆lj)


 .

We denote by b̃j(xij)
⊤ the ith row of matrix B̃j . Hence, the ith entry

of the vector B̃jθj is given by:

b̃j(xij)
⊤θj =

K∑

k=1

θjkbjk(xij)−
1

L

L∑

l=1

K∑

k=1

θjkbjk(x̆lj)

and according to (3.2), the identifiability constraint is translated as

f̃j(xij) = fj(xij) − L−1
∑L

l=1 fj(x̆lj), i.e. the additive functional com-

ponents are centered around their average value (computed over a fine

equidistant grid). To see how this solves the identifiability problem,

consider again the simple model E(y) = β0 + f(x) − f̄ , with f̄ =

L−1
∑L

l=1 f(x̆l) the average of f over a fine grid. Adding c to the inter-

cept and subtracting the same amount from f yields:
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Ẽ(y) = β0 + c+ f(x)− c− L−1
L∑

l=1

(f(x̆l)− c)

Ẽ(y) = β0 + c+ f(x)− c− f̄ + c

Ẽ(y) = β0 + c+ (f(x)− f̄),

such that E(y) ̸= Ẽ(y). Centering the B-spline matrices implies a rank

reduction as stated in the following proposition:

Proposition (Rank-reduction due to centering)

The rank of the centered B-spline matrix B̃j is K − 1.

Proof:

Let us first use the property that 1n = Bj1K , i.e. the sum over the rows

of matrix Bj is equal to one, and write the centered matrix as follows:

B̃j = Bj −Bj(1K1⊤L/L)B̆j

= Bj(IK − B),

where B = (L−11K1⊤L )B̆j is a K ×K idempotent matrix. Indeed:

BB = L−1L−11K1⊤L B̆j1K1⊤L B̆j

= L−1L−11K(1⊤L1L)1
⊤
L B̆j using 1L = B̆j1K

= (L−11K1⊤L )B̆j

= B.

Provided the Schoenberg-Whitney conditions are satisfied, the B-spline

matrix Bj will have full column rankK (see Ma and Kruth, 1995). Using

the product property of ranks, it follows that rank(B̃j) = rank(IK −B).
As B is idempotent, (IK −B) is also idempotent and so its rank is equal

to its trace:

rank(B̃j) = rank(IK − B)
= Tr(IK − B)
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= Tr(IK)− Tr(L−11K1⊤L B̆j)

= K − L−1Tr(B̆j1K1⊤L )

= K − L−1Tr(1L1
⊤
L )

= K − 1. □

To ensure that all the spline coefficients can be estimated in a unique

way, we followWood (2017) and fix theKth element of each spline vector

θj to zero and delete the Kth column in B̃j and difference matrix Dr.

Hence B̃j has K − 1 columns and ξ has dimension dim(ξ) = q × (K −
1) + p + 1. Taking the identifiability constraint into account, the ith

entry of the vector B̃jθj becomes:

b̃j(xij)
⊤θj =

K−1∑

k=1

θjkbjk(xij)−
1

L

L∑

l=1

K−1∑

k=1

θjkbjk(x̆lj). (3.3)

With the identifiability constraint and the centered Z matrix, the addi-

tive model in (3.1) can be expressed compactly as:

y = Zβ + B̃1θ1 + · · ·+ B̃qθq + ε

= Bξ + ε, (3.4)

where B is a side by side configuration of design matrices, B = [Z :

B̃1 : . . . : B̃q] and corresponds to the full design matrix of the model.

In the next section, we summarize the full Bayesian model and proceed

with the derivation of the conditional posterior distribution of the latent

vector.

3.3 Conditional posterior for ξ

As in the previous chapters, we use the following priors for the penalty

parameters λj |δj ∼ G(ν/2, (νδj)/2), j = 1, . . . , q and δj ∼ G(aδ, bδ), j =
1, . . . , q with aδ = bδ = 10−4 and ν = 3. Moreover, we use Jeffreys’ prior

for the precision p(τ) ∝ τ−1 and write the hyperparameter vector as

η = (λ⊤, δ⊤, τ)⊤, where δ = (δ1, . . . , δq)
⊤. The full Bayesian model is

written as follows:
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yi|ξ, τ ∼ N1

(
β0 +

p∑

l=1

βlzil +

q∑

j=1

bj(xij)
⊤θj , τ

−1

)
, i = 1, . . . , n,

θ|λ, τ ∼ Ndim(θ)

(
0, (τP(λ))−1

)
,

ξ|λ, τ ∼ Ndim(ξ)

(
0, (τQλ

ξ )
−1
)
,

λj |δj ∼ G(ν/2, (νδj)/2), j = 1, . . . , q,

δj ∼ G(aδ, bδ), j = 1, . . . , q,

p(τ) ∝ τ−1.

Taking into account the centering of the covariates in the linear part

and the identifiability constraint of the smooth functions, the likelihood

of the model is written as:

L(ξ, τ ;D) =

n∏

i=1

√
τ√
2π

exp
{
− τ

2

(
yi −

(
β0 +

p∑

l=1

βl(zil − z̄l)

+

q∑

j=1

b̃j(xij)
⊤θj

))2}

∝ τ
n
2 exp

{
− τ

2
(y −Bξ)⊤(y −Bξ)

}
.

The conditional posterior distribution of the vector of regression and

spline parameters can be obtained as follows:

p(ξ|λ, τ,D) =
L(ξ, τ ;D)p(ξ,λ, τ)

p(λ, τ,D)

∝ L(ξ, τ ;D) p(ξ|λ, τ).

Using the previously specified prior for ξ and likelihood, we get:

p(ξ|λ, τ,D) ∝ exp
(
− τ

2

(
y⊤y − 2y⊤Bξ + ξ⊤B⊤Bξ

)
− τ

2
ξ⊤Qλ

ξ ξ
)

∝ exp
(
τy⊤Bξ − τ

2
ξ⊤(B⊤B +Qλ

ξ )ξ
)
. (3.5)

Note that (3.5) is the exponential of a quadratic form in ξ and can be

written as a Gaussian distribution. To find the mean vector we solve

∇ξ log p(ξ|λ, τ,D) = 0 and obtain ξ̂λ = (B⊤B + Qλ
ξ )

−1B⊤y. The pre-

cision is −∇2
ξ log p(ξ|λ, τ,D) = τ(B⊤B + Qλ

ξ ) and so the conditional
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posterior of the vector of regression and B-spline coefficients is charac-

terized by the following Gaussian distribution:

(ξ|λ, τ,D) ∼ Ndim(ξ)

(
ξ̂λ, τ

−1(B⊤B +Qλ
ξ )

−1
)
. (3.6)

3.4 Posterior of the penalty vector

3.4.1 Objectives

The aim of this section is to derive the posterior of the hyperparameter

vector η, an essential step to obtain the joint marginal posterior of ξ.

First, we give the expression of p(η|D) and show how it can be integrated

with respect to the nuisance hyperparameters δ and τ resulting in a

posterior for the roughness penalty vector. The gradient and Hessian of

the posterior penalty are then analytically derived and used to compute

the posterior mode through a Newton-Raphson algorithm.

3.4.2 Posterior of the full hyperparameter vector

The posterior of the full hyperparameter vector η is:

p(η|D) =
p(ξ,η|D)

p(ξ|η,D)

=
L(ξ, τ ;D)p(ξ,η)

p(D)p(ξ|η,D)

=
L(ξ, τ ;D)p(ξ|η)p(λ, δ|τ)p(τ)

p(D)p(ξ|η,D)
,

where p(ξ|η) = p(ξ|λ, δ, τ) = p(ξ|λ, τ) as ξ ⊥ δ|λ, τ and p(λ, δ|τ) =

p(λ, δ) as λ, δ ⊥ τ . Hence, the expression becomes:

p(η|D) ∝
L(ξ, τ ;D)p(ξ|λ, τ)

(
q∏

j=1

p(λj |δj)
)(

q∏

j=1

p(δj)

)
p(τ)

p(ξ|λ, τ,D)
,

where p(λj |δj) ∝ δ
ν
2
j λ

( ν
2
−1)

j exp
(
− ν

2δjλj
)
and p(δj) ∝ δaδ−1

j exp(−bδδj).
Note also that:
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(
q∏

j=1

p(λj |δj)
) (

q∏

j=1

p(δj)

)
∝
(

q∏

j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))

×
(

q∏

j=1

λ
( ν
2
−1)

j

)
.

Following Rue et al. (2009), the posterior of the hyperparameter vector

can be evaluated around the mode of the conditional posterior of ξ,

namely p(η|D)
∣∣
ξ=ξ̂λ

. Using the previously derived expressions of the

model:

p(η|D)
∣∣
ξ=ξ̂λ

∝ τ
n
2 exp

(
−τ
2
y⊤y + τy⊤Bξ − τ

2
ξ⊤B⊤Bξ

) ∣∣∣
ξ=ξ̂λ

× τ
dim(ξ)

2 |Qλ
ξ |

1
2 exp

(
−τ
2
ξ⊤Qλ

ξ ξ
) ∣∣∣

ξ=ξ̂λ

×
(

q∏

j=1

δ
( ν
2
+aδ−1)

j exp
(
−δj

(
bδ +

ν

2
λj

))) ( q∏

j=1

λ
( ν
2
−1)

j

)

× τ−1τ−
dim(ξ)

2 |B⊤B +Qλ
ξ |−

1
2 .

Replacing ξ by ξ̂λ = (B⊤B + Qλ
ξ )

−1B⊤y in the above expression, one

obtains:

p(η|D)
∣∣
ξ=ξ̂λ

∝ τ (
n
2
−1)|B⊤B +Qλ

ξ |−
1
2 |Qλ

ξ |
1
2

(
q∏

j=1

δ
( ν
2
+aδ−1)

j

× exp
(
−δj

(
bδ +

ν

2
λj

))) ( q∏

j=1

λ
( ν
2
−1)

j

)

× exp
(
− τ

2
y⊤y + τy⊤B(B⊤B +Qλ

ξ )
−1B⊤y − τ

2
y⊤B

×(B⊤B +Qλ
ξ )

−1(B⊤B +Qλ
ξ )(B

⊤B +Qλ
ξ )

−1B⊤y
)

∝ τ (
n
2
−1)|B⊤B +Qλ

ξ |−
1
2 |Qλ

ξ |
1
2

(
q∏

j=1

δ
( ν
2
+aδ−1)

j

× exp
(
− δj

(
bδ +

ν

2
λj

)))
×
(

q∏

j=1

λ
( ν
2
−1)

j

)
exp

(
− τ

2
y⊤y

+τy⊤B(B⊤B +Qλ
ξ )

−1B⊤y − τ

2
y⊤B(B⊤B +Qλ

ξ )
−1B⊤y

)
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∝ τ (
n
2
−1)|B⊤B +Qλ

ξ |−
1
2 |Qλ

ξ |
1
2

(
q∏

j=1

δ
( ν
2
+aδ−1)

j exp
(
−δj

(
bδ +

ν

2
λj

)))

×
(

q∏

j=1

λ
( ν
2
−1)

j

)
exp

(
−τ
2
y⊤y +

τ

2
y⊤B(B⊤B +Qλ

ξ )
−1B⊤y

)

∝ τ (
n
2
−1)|B⊤B +Qλ

ξ |−
1
2 |Qλ

ξ |
1
2

(
q∏

j=1

δ
( ν
2
+aδ−1)

j exp
(
−δj

(
bδ +

ν

2
λj

)))

×
(

q∏

j=1

λ
( ν
2
−1)

j

)
exp

(
−τ
2
y⊤(In −B(B⊤B +Qλ

ξ )
−1B⊤)y

)
.

Let us define the scalar function ϕ(λ) := 1
2y

⊤(In−B(B⊤B+Qλ
ξ )

−1B⊤)y

(see Appendix C1 for efficient evaluation of this function) and write

compactly:

p(η|D)
∣∣
ξ=ξ̂λ

∝ |B⊤B +Qλ
ξ |−

1
2 |Qλ

ξ |
1
2

(
q∏

j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))

×
(

q∏

j=1

λ
( ν
2
−1)

j

)
τ (

n
2
−1) exp

(
− τϕ(λ)

)
. (3.7)

3.4.3 Integration with respect to the nuisance parameters

The nuisance parameter τ can be integrated out from (3.7) as expres-

sion τ (
n
2
−1) exp

(
− τϕ(λ)

)
is up to a multiplicative constant the den-

sity of a Gamma distribution parameterized by G(n/2, ϕ(λ)). Hence,∫ +∞
0 τ (

n
2
−1) exp

(
−τϕ(λ)

)
dτ = Γ

(
n
2

)
ϕ(λ)−

n
2 , where Γ(·) is the Gamma

function. Using this property, the integral is given by:

p(λ, δ|D) =

∫ +∞

0
p(η|D)

∣∣
ξ=ξ̂λ

dτ

∝ |B⊤B +Qλ
ξ |−

1
2 |Qλ

ξ |
1
2

(
q∏

j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))

×
(

q∏

j=1

λ
( ν
2
−1)

j

)
ϕ(λ)−

n
2 . (3.8)
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The above expression can be further simplified using the property that

the determinant of a block diagonal matrix is equal to the product of

the determinants of the blocks:

|Qλ
ξ |

1
2 =


ζ(p+1) |Ip+1| |P |q

q∏

j=1

λ
(K−1)
j




1
2

= ζ
(p+1)

2 |P | q2︸ ︷︷ ︸
constant

q∏

j=1

λ
(K−1)

2
j ,

such that (3.8) becomes:

p(λ, δ|D) ∝ |B⊤B +Qλ
ξ |−

1
2

(
q∏

j=1

λ

(
ν+K−3

2

)
j

)

×
(

q∏

j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))
ϕ(λ)−

n
2 . (3.9)

The posterior in (3.9) can be integrated with respect to δj successively for

j = 1, . . . , q since δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ+

ν
2λj

))
is (up to a multiplica-

tive constant) a Gamma density parameterized by G(ν2 + aδ, bδ +
ν
2λj),

so:

∫ +∞

0
· · ·
∫ +∞

0

(
q∏

j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))
dδ1 . . . dδq

=

q∏

j=1

(∫ +∞

0
δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

))
dδj

)

=

(
Γ
(ν
2
+ aδ

))q( q∏

j=1

(
bδ +

ν

2
λj

)−( ν
2
+aδ)

)
(3.10)

and the posterior of the penalty vector is:

p(λ|D) =

∫ +∞

0
· · ·
∫ +∞

0
p(λ, δ|D) dδ1 . . . dδq

∝ |B⊤B +Qλ
ξ |−

1
2

(
q∏

j=1

λ

(
ν+K−3

2

)
j

)(
q∏

j=1

(
bδ +

ν

2
λj

)−( ν
2
+aδ)

)
ϕ(λ)−

n
2 .

(3.11)
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One can easily compute the ratio:

p(τ |λ,D) =
p(τ,λ|D)

p(λ|D)

∝ τ(
n
2
−1) exp(−τϕ(λ)),

such that the conditional posterior distribution for τ is (τ |λ,D) ∼
G (n/2, ϕ(λ)).

3.4.4 Gradient and Hessian of the posterior penalty

The analytical gradient and Hessian of the penalty vector can be de-

rived to find its posterior mode via a Newton-Raphson algorithm. The

posterior mode as a measure of central tendency is essential to construct

a grid for exploring p(λ|D). To ensure numerical stability, the penalty

parameters are log transformed, vj = log(λj), for j = 1, . . . , q, and the

associated vector is v = (v1, . . . , vq)
⊤. Using the multivariate transfor-

mation method on (3.11), the posterior becomes:

p(v|D) ∝ |B⊤B +Qv
ξ |−

1
2

(
q∏

j=1

exp(vj)

(
ν+K−3

2

))

×
(

q∏

j=1

(
bδ +

ν

2
exp(vj)

)−( ν
2
+aδ)

)
ϕ(v)−

n
2

×
(

q∏

j=1

exp(vj)

)
, (3.12)

where
∏q

j=1 exp(vj) is the Jacobian of the transformation, ϕ(v) is the

following function of the log penalty vector ϕ(v) = 1
2y

⊤
(
In−B(B⊤B+

Qv
ξ )

−1B⊤
)
y and Qv

ξ is a symmetric block diagonal matrix given by:

Qv
ξ =

(
ζIp+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag(exp(v1), . . . , exp(vq))⊗ P

)
.

Taking the log of (3.12) yields:
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log p(v|D) =̇ −1

2
log |B⊤B +Qv

ξ |︸ ︷︷ ︸
Term I

+

(
ν +K − 1

2

)
q∑

j=1

vj

︸ ︷︷ ︸
Term II

−n
2
log ϕ(v)︸ ︷︷ ︸
Term III

−
(ν
2
+ aδ

) q∑

j=1

log
(
bδ +

ν

2
exp(vj)

)

︸ ︷︷ ︸
Term IV

. (3.13)

3.4.5 Gradient

Using Jacobi’s formula for the partial derivatives of the determinant

with respect to vj (see Harville, 1997, Chapter 15), in Term I:

∂ log |B⊤B +Qv
ξ |

∂vj
=

1

|B⊤B +Qv
ξ |

∂

∂vj
|B⊤B +Qv

ξ |

=
1

|B⊤B +Qv
ξ |
Tr
(
adj(B⊤B +Qv

ξ )
∂

∂vj
(B⊤B +Qv

ξ )
)

=
1

|B⊤B +Qv
ξ |
Tr
(
|B⊤B +Qv

ξ | (B⊤B +Qv
ξ )

−1

× ∂

∂vj
(B⊤B +Qv

ξ )
)

= Tr
(
Mv

ξPvj

)
, (3.14)

where adj(·) is the adjoint of a matrix (transpose of the cofactor matrix),

Mv
ξ := (B⊤B +Qv

ξ )
−1 is a symmetric matrix and Pvj is a (symmetric)

block diagonal matrix defined as:

Pvj :=
∂

∂vj
(B⊤B +Qv

ξ )

=

(
0p+1,p+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag(0, . . . , exp(vj), . . . , 0)⊗ P

)
,

where diag(0, . . . , exp(vj), . . . , 0) is a q × q diagonal matrix, whose jth

diagonal element is exp(vj) and all other diagonal elements are zero.
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Derivation of Term II with respect to vj is trivial:

∂

∂vj

(
ν +K − 1

2

)
q∑

j=1

vj =

(
ν +K − 1

2

)
. (3.15)

The partial derivative of Term III is:

∂

∂vj
log(ϕ(v)) =

1

ϕ(v)

∂ϕ(v)

∂vj

=
1

ϕ(v)

(
− 1

2

∂

∂vj

(
y⊤B(B⊤B +Qv

ξ )
−1B⊤y

))

=
1

ϕ(v)

(
− 1

2

∂

∂vj
Tr
(
y⊤B(B⊤B +Qv

ξ )
−1B⊤y

))

=
1

ϕ(v)

(
− 1

2

∂

∂vj
Tr
(
B⊤yy⊤B(B⊤B +Qv

ξ )
−1
))

=
1

ϕ(v)

(
− 1

2
Tr
(
B⊤yy⊤B

∂

∂vj
(B⊤B +Qv

ξ )
−1
))

=
1

ϕ(v)

(
− 1

2
Tr
(
B⊤yy⊤B

(
− (B⊤B +Qv

ξ )
−1Pvj

×(B⊤B +Qv
ξ )

−1
)))

=
1

ϕ(v)

(
− 1

2
Tr
(
y⊤B

(
−Mv

ξPvjMv
ξ

)
B⊤y

))

=
1

ϕ(v)

(
− 1

2
y⊤B

(
−Mv

ξPvjMv
ξ

)
B⊤y

)

=
1

2ϕ(v)
y⊤BMv

ξPvjMv
ξB

⊤y. (3.16)

Taking the derivative of Term IV with respect to vj gives:

∂

∂vj

q∑

j=1

log
(
bδ +

ν

2
exp(vj)

)
=

ν
2 exp(vj)

bδ +
ν
2 exp(vj)

=
1

1 + 2bδ
ν exp(vj)

. (3.17)

From (3.14), (3.15), (3.16) and (3.17), the gradient ∇v log p(v|D) has

entries:
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∂ log p(v|D)

∂vj
= −1

2
Tr
(
Mv

ξPvj

)
+

(
ν +K − 1

2

)

− n

4ϕ(v)
y⊤BMv

ξPvjMv
ξB

⊤y

−
(
ν
2 + aδ

)

1 + 2bδ
ν exp(vj)

, j = 1, . . . , q.

3.4.6 Hessian

To obtain the diagonal elements of the Hessian, the following differenti-

ation is required:

∂

∂vj
Tr
(
(B⊤B +Qv

ξ )
−1Pvj

)
= Tr

( ∂

∂vj
(B⊤B +Qv

ξ )
−1Pvj

)

= Tr
(
−Mv

ξPvjMv
ξPvj +Mv

ξPvj

)

= −Tr
((

Mv
ξPvj

)2
−Mv

ξPvj

)
. (3.18)

In addition, recall from (3.16) that:

∂ϕ(v)

∂vj
=

1

2
y⊤BMv

ξPvjMv
ξB

⊤y. (3.19)

Furthermore, note the following differentiation result:

∂

∂vj
y⊤BMv

ξPvjMv
ξB

⊤y

=
∂

∂vj
Tr
(
y⊤BMv

ξPvjMv
ξB

⊤y
)

=
∂

∂vj
Tr
(
B⊤yy⊤BMv

ξPvjMv
ξ

)

= Tr
(
B⊤yy⊤B

∂

∂vj
Mv

ξPvjMv
ξ

)

= Tr

(
B⊤yy⊤B

(
∂Mv

ξ

∂vj
PvjMv

ξ +Mv
ξ

∂Pvj

∂vj
Mv

ξ +Mv
ξPvj

∂Mv
ξ

∂vj

))
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= Tr

(
B⊤yy⊤B

(
− 2
(
Mv

ξPvj

)2
Mv

ξ +Mv
ξPvjMv

ξ

))

= Tr

(
y⊤B

(
− 2
(
Mv

ξPvj

)2
Mv

ξ +Mv
ξPvjMv

ξ

)
B⊤y

)

= −2y⊤B
(
Mv

ξPvj

)2
Mv

ξB
⊤y + y⊤BMv

ξPvjMv
ξB

⊤y. (3.20)

Using (3.19), (3.20) and the quotient rule for derivatives yields:

∂

∂vj

y⊤BMv
ξPvjMv

ξB
⊤y

ϕ(v)
=

1

ϕ2(v)

(
− 2ϕ(v)y⊤B

(
Mv

ξPvj

)2
Mv

ξB
⊤y

+ϕ(v)y⊤BMv
ξPvjMv

ξB
⊤y

−1

2

(
y⊤BMv

ξPvjMv
ξB

⊤y
)2)

. (3.21)

Finally, note that:

∂

∂vj

(
ν
2 + aδ

)
(
1 + 2bδ

ν exp(vj)

) =
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 , (3.22)

and using (3.18), (3.21), (3.22), the diagonal entries of the Hessian of

log p(v|D) are:

∂2 log p(v|D)

∂v2j

=
1

2
Tr
((

Mv
ξPvj

)2
−Mv

ξPvj

)
− n

4ϕ2(v)

(
− 2ϕ(v)y⊤B

(
Mv

ξPvj

)2

×Mv
ξB

⊤y + ϕ(v)y⊤BMv
ξPvjMv

ξB
⊤y − 1

2

(
y⊤BMv

ξPvjMv
ξB

⊤y
)2
)

−bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 , j = 1, . . . , q.

To obtain the off-diagonal elements of the Hessian, note that for index

s ̸= j:
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∂

∂vs
Tr
(
(B⊤B +Qv

ξ )
−1Pvj

)
= Tr

( ∂

∂vs
(B⊤B +Qv

ξ )
−1Pvj

)

= Tr
(
−Mv

ξPvsMv
ξPvj

)

= −Tr
(
Mv

ξPvsMv
ξPvj

)
.

Furthermore, similarly to (3.20):

∂

∂vs
y⊤BMv

ξPvjMv
ξB

⊤y

=
∂

∂vs
Tr
(
y⊤BMv

ξPvjMv
ξB

⊤y
)

=
∂

∂vs
Tr
(
B⊤yy⊤BMv

ξPvjMv
ξ

)

= Tr
(
B⊤yy⊤B

∂

∂vs
Mv

ξPvjMv
ξ

)

= Tr

(
B⊤yy⊤B

(
∂Mv

ξ

∂vs
PvjMv

ξ +Mv
ξ

∂Pvj

∂vs
Mv

ξ +Mv
ξPvj

∂Mv
ξ

∂vs

))

= Tr

(
B⊤yy⊤B

(
−Mv

ξPvsMv
ξPvjMv

ξ −Mv
ξPvjMv

ξPvsMv
ξ

))

= Tr

(
y⊤B

(
−Mv

ξPvsMv
ξPvjMv

ξ −Mv
ξPvjMv

ξPvsMv
ξ

)
B⊤y

)

= −y⊤BMv
ξPvsMv

ξPvjMv
ξB

⊤y − (y⊤BMv
ξPvjMv

ξPvsMv
ξB

⊤y)⊤

= −2y⊤BMv
ξPvsMv

ξPvjMv
ξB

⊤y,

such that using the quotient rule, we have:

∂

∂vs

y⊤BMv
ξPvjMv

ξB
⊤y

ϕ(v)

=
1

ϕ2(v)

(
− 2ϕ(v)y⊤BMv

ξPvsMv
ξPvjMv

ξB
⊤y

−1

2

(
y⊤BMv

ξPvjMv
ξB

⊤y
)(
y⊤BMv

ξPvsMv
ξB

⊤y
))
.
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Hence, the off-diagonal elements s = 1, . . . , q, j = 1, . . . , q and s ̸= j of

the Hessian are:

∂2 log p(v|D)

∂vs ∂vj
=

1

2
Tr
(
Mv

ξPvsMv
ξPvj

)

+
n

4ϕ2(v)

(
2ϕ(v)y⊤BMv

ξPvsMv
ξPvjMv

ξB
⊤y

+
1

2

(
y⊤BMv

ξPvjMv
ξB

⊤y
)(
y⊤BMv

ξPvsMv
ξB

⊤y
))
.

To summarize, the gradient and Hessian entries of log p(v|D) are:

Gradient ∇v log p(v|D) entries for j = 1, . . . , q:

∂ log p(v|D)

∂vj

= −1

2
Tr
(
Mv

ξPvj

)
+

(
ν +K − 1

2

)
− n

4ϕ(v)
y⊤BMv

ξPvjMv
ξB

⊤y

−
(
ν
2 + aδ

)

1 + 2bδ
ν exp(vj)

. (3.23)

Hessian ∇2
v log p(v|D), diagonal elements j = 1, . . . , q:

∂2 log p(v|D)

∂v2j

=
1

2
Tr
((

Mv
ξPvj

)2
−Mv

ξPvj

)
− n

4ϕ2(v)

(
− 2ϕ(v)y⊤B

(
Mv

ξPvj

)2

×Mv
ξB

⊤y + ϕ(v)y⊤BMv
ξPvjMv

ξB
⊤y − 1

2

(
y⊤BMv

ξPvjMv
ξB

⊤y
)2
)

−bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 .
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Hessian ∇2
v log p(v|D), off-diagonal elements s = 1, . . . , q, j =

1, . . . , q, j ̸= s:

∂2 log p(v|D)

∂vs ∂vj
=

1

2
Tr
(
Mv

ξPvsMv
ξPvj

)

+
n

4ϕ2(v)

(
2ϕ(v)y⊤BMv

ξPvsMv
ξPvjMv

ξB
⊤y

+
1

2

(
y⊤BMv

ξPvjMv
ξB

⊤y
)(
y⊤BMv

ξPvsMv
ξB

⊤y
))
.

The R output below compares (for q = 3) the analytical gradient and

Hessian formulas with the numerical derivatives of log p(v|D) obtained

with the grad() and hessian() functions of the numDeriv package at

a randomly selected point v with entries vj ∼ U(−5, 5), j = 1, 2, 3.

---------------Gradient-------------

"----------analytic----------"

-3.747028 -25.223528 -9.407790

"----------numeric-----------"

-3.747036 -25.223532 -9.407792

--------------Hessian-------------

"----------analytic----------"

[,1] [,2] [,3]

[1,] -1.774439 0.849825 0.401218

[2,] 0.849825 -3.846784 1.759438

[3,] 0.401218 1.759438 -3.381276

"----------numeric----------"

[,1] [,2] [,3]

[1,] -1.774438 0.849825 0.401218

[2,] 0.849825 -3.846783 1.759438

[3,] 0.401218 1.759438 -3.381276

In Table 3.1, we show the largest difference (in absolute value) between

the entries of the numerical and analytical gradients and Hessians re-

spectively computed across 1000 randomly selected points v with entries

vj ∼ U(−5, 5), j = 1, 2, 3.



3.5. EXPLORATION OF THE POSTERIOR PENALTY SPACE 85

v1 v2 v3

Gradient entries 0.000298 0.000141 0.001738

Hessian diagonal entries 0.010067 0.004479 0.034679

Hessian off-diagonal entries 0.000042 0.000207 0.000127

Table 3.1: Largest absolute difference between gradient and Hessian en-

tries computed from our analytical formulas and the numerical deriva-

tives from the numDeriv package.

3.5 Exploration of the posterior penalty space

A crucial step to derive the approximate posterior of latent variables is

to identify the behavior of p(v|D). This is similar to a design problem in

the sense that a set of points has to be efficiently chosen in the domain

of a response surface to capture the essence of the functional pattern. A

grid strategy is proposed that is sensible to asymmetries in the response

surface p(v|D), with the skew-normal family of distributions forming

the backbone that manages the lack of symmetry. The grid will be con-

structed around the posterior mode v̂ of the target log p(v|D) which can

be obtained through a Newton-Raphson method summarized in Algo-

rithm 2 that contains the previously derived gradient ∇v log p(v|D) and

Hessian ∇2
v log p(v|D).

3.5.1 Grid strategy with skew-normal match

An elementary approach to explore p(v|D) could rely on a multivariate

Gaussian approximation to the posterior of the log penalty parameters v,

namely p̃G(v|D) = Ndim(v)

(
v̂,
(
−H∗)−1

)
, where the covariance matrix

is obtained from the Hessian H∗ = ∇2
v log p(v̂|D) evaluated at the mode

v̂. However, as already pointed in Martins et al. (2013), the presence of

potential asymmetries would not be captured by a Gaussian approxima-

tion. Instead, to efficiently explore the posterior penalty space, a grid

strategy is proposed, which implicitly takes into account asymmetries

by using skew-normal distributions to approximate the conditional pos-

terior of each penalty parameter through a moment-matching approach.
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Algorithm 2: Newton-Raphson to locate the mode of p(v|D)

1: Set tol=10−5, dist=3, v(0) =
(
v
(0)
1 , . . . , v

(0)
q

)
and m=0.

2: while dist > tol do

3: v(m+1) = v(m) −
(
∇2

v log p(v
(m)|D)

)−1
∇v log p(v

(m)|D).

4: dist=∥v(m+1) − v(m)∥.
5: end while

6: At convergence return v̂ = (v̂1, . . . , v̂q).

The skew-normal family was first introduced by Azzalini (1985), see Az-

zalini (2014) for more details. In the univariate case, a random variable

X has a skew-normal distribution denoted by X ∼ SN(µ, ς2, ρ) if its

probability density function at x ∈ R is:

p(x) =
2

ς
φ

(
x− µ

ς

)
Φ

(
ρ
(x− µ)

ς

)
, (3.24)

where µ ∈ R is a location parameter, ς ∈ R++ a scale parameter and

ρ ∈ R a shape parameter regulating skewness. Also, φ(·) and Φ(·) denote
the standard Gaussian density function and its cumulative distribution

function respectively, such that setting ρ = 0 yields the N (µ, ς2) distri-

bution.

We suggest to approximate the conditional posterior distribution of

(vj |v̂−j ,D) (j = 1, ..., q) with a skew-normal distribution by matching

its first three empirical moments with the theoretical ones for the density

in (3.24), where v̂−j denotes the vector v̂ without the jth entry. The

derivations to obtain µ∗, ς∗ and ρ∗ in the approximating skew-normal

distribution SNj(µ
∗, ς∗2, ρ∗) to p(vj |v̂−j ,D) through moment matching

are shown below.

3.5.2 Approximating skew-normal distribution

The first moment and the second and third central moments of X ∼
SN(µ, ς2, ρ) are given by:
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E(X) = µ+ ς

√
2

π
ψ,

E
(
(X − E(X))2

)
= ς2

(
1− 2

π
ψ2

)
,

E
(
(X − E(X))3

)
=

1

2
(4− π) ς3

(
2

π

) 3
2

ψ3,

where ψ = ρ/
√
1 + ρ2 ∈ (−1, 1). These theoretical moments will be

matched with the empirical moments of the conditional distributions

p(vj |v̂−j ,D). The empirical moments of the conditionals are computed

on an equidistant grid {vjl}Ll=1 with interval length ∆l:

mj1 =
L∑

l=1

vjl p(vjl|v̂−j ,D) ∆l,

mj2 =

L∑

l=1

(vjl −mj1)
2 p(vjl|v̂−j ,D) ∆l,

mj3 =
L∑

l=1

(vjl −mj1)
3 p(vjl|v̂−j ,D) ∆l.

Fast evaluation of the above empirical moments is discussed in Appendix

C2. The skew-normal fit to p(vj |v̂−j ,D) is found by matching the em-

pirical and theoretical moments, i.e. the following system needs to be

solved:

mj1 = µ+ ς

√
2

π
ψ (3.25)

mj2 = ς2
(
1− 2

π
ψ2

)
(3.26)

mj3 =
1

2
(4− π) ς3

( 2
π

) 3
2
ψ3. (3.27)

From (3.26), we isolate ς:

ς =

√
mj2(

1− 2
π ψ2

) > 0. (3.28)
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Plugging (3.28) in (3.27) yields:

mj3 =
1

2
(4− π)

m
3
2
j2

(
1− 2

π ψ2
) 3

2

( 2
π

) 3
2
ψ3

⇔ ψ3

(
1− 2

π ψ2
) 3

2

=
2mj3π

3
2

(4− π)m
3
2
j22

3
2

⇔ ψ3

(
1− 2

π ψ2
) 3

2

=
mj3π

3
2

(4− π)
√
2 m

3
2
j2

⇔ ψ
(
1− 2

π ψ2
) 1

2

=
m

1
3
j3π

1
2

(4− π)
1
3 2

1
6 m

1
2
j2

.

Let κ := m
1
3
j3π

1
2 /(4− π)

1
3 2

1
6 m

1
2
j2, so that the above equation becomes:

ψ = κ

(
1− 2

π
ψ2

) 1
2

⇔ ψ2 +
2κ2

π
ψ2 − κ2 = 0

⇔ ψ2

(
1 +

2κ2

π

)
− κ2 = 0.

The discriminant of the above quadratic equation in ψ is given by

∆ = 4
(
1 + 2κ2

π

)
κ2 > 0. Even though there are two solutions, the

only solution retained is the one whose sign is the same as the sign of

the third empirical central moment. Indeed, if mj3 is negative/positive,

ψ∗ (and by extension ρ∗) should also be negative/positive to capture the

negatively/positively skewed pattern of p(vj |v̂−j ,D). Hence, using the

sign(·) function:

ψ∗ = sign(mj3)

√
4
(
κ2 + 2κ4

π

)

2 + 4κ2

π

. (3.29)

So, we have ρ∗ = ψ∗/
√
1− (ψ∗)2 and plugging (3.29) in (3.28), we

recover:
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ς∗ =

√
mj2(

1− 2
π (ψ∗)2

) . (3.30)

Finally, the location parameter is given by:

µ∗ = mj1 − ς∗
√

2

π
ψ∗. (3.31)

The skew-normal fit to the conditional p(vj |v̂−j ,D) is written as follows

SNj(µ
∗, ς∗2, ρ∗) and can be used for the grid construction strategy.

Once a skew-normal distribution has been adjusted to the conditional

p(vj |v̂−j ,D), we construct an equidistant grid {vjm}Mm=1 of size M from

the 2.5th to the 97.5th quantiles of the skew-normal fit denoted by

SNj,0.025 and SNj,0.975 respectively. This process is repeated across all

dimensions j = 1, . . . , q and a Cartesian product of the univariate grids

is taken, ending up with a total of M q (multivariate) grid points. Next,

a filtering strategy is implemented to get rid of quadrature points asso-

ciated to a small posterior mass.

Let us consider the normalized posterior R(v) = p(v|D)/p(v̂|D) and

use the property that −2 logR(v) is approximately distributed as a chi-

square distribution with dim(v) degrees of freedom denoted by χ2
dim(v).

Then, an approximate (1 − α) credible region for v is defined by the

set of values in Rdim(v) such that R(v) ≥ exp
(
−0.5χ2

dim(v);1−α

)
. As an

illustration, take α = 0.05 and dim(v) = 2. If we decide to concentrate

on quadrature points in the 95% credible region for v, then the preceding

result would suggest to discard values v in the bivariate grid for which

R(v) < exp(−0.5χ2
2;0.95) = 0.05, leaving M̃ grid points after filtering.

Figure 3.1 highlights the difference between the skew-normal match and

the naive Gaussian fit to the targets p(vj |v̂−j ,D), j = 1, 2 with q = 2

nonlinear smooth functions in the additive predictor and sample size

n = 300. In Figure 3.2, the surface plot of R(v) is shown. Finally,

Figure 3.3 summarizes the strategy behind the grid construction. In (a),

an equidistant univariate grid is constructed in each dimension resulting

in a cross-shaped pattern with center v̂.
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Figure 3.1: Skew-normal fit (dashed) and naive Gaussian match (dash-

dotted) to the normalized conditional p(v1|v̂2,D) (left) and p(v2|v̂1,D)

(right). The skew-normal fit is closer to the target and captures the lack

of symmetry.
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Figure 3.2: Surface plot of R(v) when q = 2.

The Cartesian product of these univariate grids is computed and shown

in (b). Following our filtering rule, we only keep a subset of the Cartesian

product grid as shown by the blue points in (c). Figure 3.3 (d) shows the

final grid that will be used for further inference in the additive model.
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Figure 3.3: Grid strategy to explore log p(v|D). (a) Equidistant univari-

ate grid in each dimension. (b) Cartesian product. (c) Filtering out the

points. (d) Final grid used for further inference in the additive model.

3.6 Approximate marginal posterior of vector ξ

The quadrature points derived in the previous section will serve to ap-

proximate the posterior of the vector ξ containing the regression and

spline parameters and to construct pointwise estimators and credible

intervals. The posterior of ξ can be written as:

p(ξ|D) =

∫

R++

· · ·
∫

R++

p(ξ,λ, δ, τ |D) dλ1 . . . dλq dδ1 . . . dδq dτ

=

∫

Rq
++

∫

Rq
++

∫

R++

p(ξ|λ, τ,D) p(τ |λ,D) p(δ,λ|D) dλ dδ dτ

=

∫

Rq
++

(∫

R++

p(ξ|λ, τ,D) p(τ |λ,D) dτ

) (∫

Rq
++

p(δ,λ|D) dδ

)
dλ
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=

∫

Rq
++

(∫

R++

p(ξ|λ, τ,D) p(τ |λ,D) dτ

)
p(λ|D) dλ (3.32)

The integral with respect to τ results in a function of ξ that corresponds

to a multivariate Student distribution with n degrees of freedom. In-

deed, let us reparameterize the conditional posterior of the precision

as (τ |λ,D) ∼ G (n/2, (nsλ)/(2n)), with the following scalar quantity

sλ = y⊤
(
In −B(B⊤B +Qλ

ξ )
−1B⊤

)
y, so that the integrand can be

written as the product of the two distributions:

p(ξ|λ, τ,D) = (2π)−
dim(ξ)

2 τ
dim(ξ)

2 |B⊤B +Qλ
ξ |

1
2

× exp
(
−τ
2

(
ξ − ξ̂λ

)⊤(
B⊤B +Qλ

ξ

)(
ξ − ξ̂λ

))

p(τ |λ,D) =

(
sλ
n

)n
2
(
n
2

)n
2

Γ
(
n
2

) τ

(
n
2
−1
)
exp

(
− τ

sλ
n

n

2

)
,

The integrand is thus given by:

p(ξ|λ, τ,D) p(τ |λ,D)

=
|B⊤B +Qλ

ξ |
1
2

(
sλ
n

)n
2
(
n
2

)n
2

(2π)
dim(ξ)

2 Γ
(
n
2

) τ

(
n+dim(ξ)

2
−1
)
exp

(
− τ

(
1

2

(
ξ − ξ̂λ

)⊤

×
(
B⊤B +Qλ

ξ

)(
ξ − ξ̂λ

)
+
sλ
n

n

2

))
.

Let u :=
(
1
2

(
ξ − ξ̂λ

)⊤(
B⊤B +Qλ

ξ

)(
ξ − ξ̂λ

)
+ (sλ/n)(n/2)

)
and con-

sider the integral:

∫

R++

τ

(
n+dim(ξ)

2
−1
)
exp(−τu) dτ = Γ

(
n+ dim(ξ)

2

)
u−

(n+dim(ξ))
2 .

Using the above result, the integral is:
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∫

R++

p(ξ|λ, τ,D) p(τ |λ,D) dτ

=
Γ
(
n+dim(ξ)

2

)
|B⊤B +Qλ

ξ |
1
2

(
sλ
n

)n
2
(
n
2

)n
2

(2π)
dim(ξ)

2 Γ
(
n
2

)

×
(
1

2

(
ξ − ξ̂λ

)⊤(
B⊤B +Qλ

ξ

)(
ξ − ξ̂λ

)
+
sλ
n

n

2

)− (n+dim(ξ))
2

=
Γ
(
n+dim(ξ)

2

)
|B⊤B +Qλ

ξ |
1
2

(
sλ
n

)n
2
(
n
2

)n
2

(2π)
dim(ξ)

2 Γ
(
n
2

)

×
(
sλ
n

n

2

(
1 +

1

n

(
ξ − ξ̂λ

)⊤(
n s−1

λ

(
B⊤B +Qλ

ξ

))(
ξ − ξ̂λ

)))− (n+dim(ξ))
2

=
Γ
(
n+dim(ξ)

2

) (
n
2

)−dim(ξ)
2 |B⊤B +Qλ

ξ |
1
2

(
sλ
n

)−dim(ξ)
2

(2π)
dim(ξ)

2 Γ
(
n
2

)

×
(
1 +

1

n

(
ξ − ξ̂λ

)⊤(
n s−1

λ

(
B⊤B +Qλ

ξ

))(
ξ − ξ̂λ

))− (n+dim(ξ))
2

.

Note that:

∣∣∣B⊤B +Qλ
ξ

∣∣∣
1
2
(sλ
n

)−dim(ξ)
2

=
∣∣∣
(sλ
n

)(
B⊤B +Qλ

ξ

)−1
∣∣∣
− 1

2
,

so that the integral is finally given by:

∫

R++

p(ξ|λ, τ,D) p(τ |λ,D) dτ

=
Γ
(
n+dim(ξ)

2

)

Γ
(
n
2

)
n

dim(ξ)
2 π

dim(ξ)
2

∣∣∣ sλn
(
B⊤B +Qλ

ξ

)−1
∣∣∣
1
2

×
(
1 +

1

n

(
ξ − ξ̂λ

)⊤(sλ
n

(
B⊤B +Qλ

ξ

)−1
)−1(

ξ − ξ̂λ
))− (n+dim(ξ))

2

.

The above formula is a multivariate Student distribution for ξ (see Jack-

man, 2009, p.508) with n degrees of freedom denoted by tn

(
ξ̂λ, S̃λ

)
with
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location parameter ξ̂λ = (B⊤B + Qλ
ξ )

−1B⊤y and symmetric, positive-

definite matrix S̃λ = sλ
n

(
B⊤B+Qλ

ξ

)−1
. Using the above integral result,

the marginal posterior of ξ in (3.32) simplifies to:

p(ξ|D) =

∫

Rq
++

tn

(
ξ̂λ, S̃λ

)
p(λ|D) dλ. (3.33)

Using the log-transformation on the penalty parameters, (3.33) becomes:

p(ξ|D) =

∫

Rq

tn

(
ξ̂v, S̃v

)
p(v|D) dv, (3.34)

where ξ̂v = (B⊤B + Qv
ξ )

−1B⊤y and S̃v = (sv/n)
(
B⊤B + Qv

ξ

)−1
with

the scalar sv = y⊤
(
In −B(B⊤B +Qv

ξ )
−1B⊤

)
y. Let ∆vj be the width

of the jth univariate grid and denote by ∆v = ∆v1 × · · · × ∆vq the

discretized version of dv. Using the quadrature points from the grid

strategy {v(m)}M̃m=1, integral (3.34) can be approximated as follows:

p̃(ξ|D) =
M̃∑

m=1

tn

(
ξ̂v(m) , S̃v(m)

)
p(v(m)|D) ∆v. (3.35)

Furthermore, define the weights:

ωm =
p(v(m)|D) ∆v

∑M̃
m=1 p(v

(m)|D) ∆v
, m = 1, . . . , M̃ . (3.36)

Dividing (3.35) by the denominator of ωm, one obtains a mixture of

multivariate Student distributions for the approximate posterior of the

latent vector:

p̃(ξ|D) =
M̃∑

m=1

ωm tn

(
ξ̂v(m) , S̃v(m)

)
. (3.37)

Note that ωm ≥ 0 and
∑M̃

m=1 ωm = 1, such that (3.37) is a probabil-

ity density function. Furthermore, tn
(
ξ̂v(m) , S̃v(m)

)
converges in law to

Ndim(ξ)

(
ξ̂v(m) , S̃v(m)

)
as n→ +∞ (see Kroese et al., 2013, p. 147), so for

n sufficiently large, we can write (3.37) as a finite mixture of multivariate

Gaussian densities:
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p̃(ξ|D) =

M̃∑

m=1

ωm Ndim(ξ)

(
ξ̂v(m) , S̃v(m)

)
. (3.38)

A point estimate for the latent vector is given by the posterior mean

of (3.38) which is simply the mixture of the location components (see

Frühwirth-Schnatter, 2006):

ξ̂ =
M̃∑

m=1

ωm ξ̂v(m) . (3.39)

From (τ |v,D) ∼ G (n/2, ϕ(v)), a point estimate of the precision can

be obtained by computing the posterior mean of the Gamma at the

posterior mode v̂ of log p(v|D), i.e. τ̂ = 0.5 n (ϕ(v̂))−1. Hence, a point

estimate of the standard deviation of the error is σ̂ = τ̂−0.5.

3.7 Credible intervals

3.7.1 Quantile-based credible intervals for latent variables

Approximate quantile-based credible intervals for latent variables ξh, h =

1, . . . ,dim(ξ) can be straightforwardly constructed. Starting from the

joint marginal posterior in (3.38), we can write the univariate marginal

posterior for element ξh as:

p̃(ξh|D) =

M̃∑

m=1

ωm N1

(
ξ̂h,v(m) , S̃hh,v(m)

)
, (3.40)

where ξ̂h,v(m) is the hth entry of vector ξ̂v(m) and S̃hh,v(m) is the hth

entry on the diagonal of matrix S̃v(m) . Posterior (3.40) can then be used

to numerically construct an approximate (1−α)× 100% quantile-based

credible interval for ξh as follows. Construct an equidistant fine grid, say

{ξhl}Ll=1 of width ∆l, and evaluate the posterior at each element of that

grid, i.e. compute p̃(ξhl|D) =
∑M̃

m=1 ωm N1

(
ξhl; ξ̂h,v(m) , S̃hh,v(m)

)
, for l =

1, . . . , L. Then, find the indices qlow ∈ {1, . . . , L} and qup ∈ {1, . . . , L},
such that

∑qlow
l=1 p̃(ξhl|D) ∆l ≈ α/2 and

∑qup
l=1 p̃(ξhl|D) ∆l ≈ 1 − (α/2).

The resulting interval [ξhqlow , ξhqup ] is an approximate (1 − α) × 100%

quantile-based credible interval for ξh.
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3.7.2 Pointwise credible intervals for smooth functions

To obtain pointwise set estimates of a smooth function fj , let {xl}Ll=1 be

an equidistant (fine) grid on the domain of fj and ξθj
be the subvector

of ξ corresponding to the spline vector θj = (θj1, . . . , θjK−1)
⊤. Also,

denote by b̃⊤
l = (b̃j1(xl), . . . , b̃jK−1(xl)) the vector of B-splines in the

basis evaluated at xl. The function fj at point xl is thus modeled as

fj(xl|ξθj
) = b̃⊤

l ξθj
and from (3.38) the posterior of ξθj

is approximated

by the finite mixture:

p̃(ξθj
|D) =

M̃∑

m=1

ωm NK−1

(
ξ̂θj ,v(m) , S̃θj ,v(m)

)
, (3.41)

where S̃θj ,v(m) is a submatrix of S̃v(m) corresponding to the variance-

covariance matrix of ξθj
. As fj(xl|ξθj

) is a linear combination of the

spline vector, a natural candidate to approximate the following posterior

p(fj(xl|ξθj
)|D) is to use a mixture of univariate normals:

p̃(fj(xl|ξθj
)|D) =

M̃∑

m=1

ωm N1

(
b̃⊤
l ξ̂θj ,v(m) , b̃⊤

l S̃θj ,v(m)b̃l

)
.

A quantile-based credible interval for fj at point xl can easily be com-

puted from the above (approximate) univariate posterior as in Section

3.7.1.

3.8 Simulation study

The performance of LPS in additive models (with cubic B-splines and

a third order penalty) is assessed through different simulation scenar-

ios and compared with results obtained using the gam() function of the

mgcv package in R (Wood, 2017), a popular and established toolkit for

estimating (generalized) additive models. Options of the gam() function

are carefully chosen so that the generated results can be meaningfully

compared to these obtained using our Laplace-P-spline approach. In

particular, smooth terms are specified with the gam() function using

s(x, bs=“ps”, k=K, m=c(2,3)) , where x is the vector of covariate values

associated to the estimated smooth function and ps specifies a P-spline

basis. The scalar k is the basis dimension, the first entry in m = c(·, ·)
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refers to the order of the spline basis (with order 2 corresponding to cu-

bic P-splines), while the second entry refers to the order of the difference

penalty. Another chosen option in gam() ismethod = “REML”, requir-

ing an estimation of the penalty parameters λ by restricted maximum

likelihood. It corresponds to an empirical Bayes approach in the sense

that a Bayesian log marginal likelihood is maximized with respect to λ

in a context where penalties come from Gaussian priors on the spline

coefficients (Marra and Wood, 2011; Wood et al., 2013). The optimiza-

tion method in gam() is chosen to be optimizer=c(“outer”,“newton”) as

it provides reliable and stable computations.

3.8.1 Simulation results for parameters in the linear part

The first set of simulations consists in S = 500 replications of a sample

of size n = 300 with three covariates in the linear part generated inde-

pendently as zi1 ∼ Bern(0.5), zi2 ∼ N (0, 1) and zi3 ∼ N (0, 1), for i =

1, . . . , n and coefficients β0 = 0.50, β1 = 1.60, β2 = −0.80, β3 = 0.40.

The covariates for the smooth functions are independent draws from the

uniform distribution on the domain [−1, 1]. The functions of interest

are partly inspired from Antoniadis et al. (2012) and are given by:

f1(x1) = cos(2πx1),

f2(x2) = 6
(
0.1 sin(2πx2) + 0.2 cos(2πx2) + 0.3 sin2(2πx2)

+0.4 cos3(2πx2) + 0.5 sin3(2πx2)
)
− 0.9,

f3(x3) = 3x53 + 2 sin(4x3) + 1.5x23 − 0.5.

Three noise levels are considered, namely σ ∈ {0.20, 0.40, 0.60}, corre-
sponding to a high, medium and low signal to noise ratio. Each smooth

function is modeled by a linear combination of cubic B-splines with a

third order penalty and K = 15 B-splines in [−1, 1]. The frequentist

properties of the Bayesian estimators are measured by the bias, the em-

pirical standard error (ESE), the root mean square error (RMSE) and

coverage probability (CP) of the 90% and 95% (pointwise) credible in-

tervals for the linear coefficients.

Figure 3.4 illustrates the shape of the functions f1, f2 and f3 with a

set of simulated data for n = 300 with medium signal to noise ratio

(σ = 0.40).
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Figure 3.4: Illustration of functions f1, f2, f3 (solid lines) and simulated

data (n = 300) under medium signal to noise ratio (σ = 0.40).

The simulation results given in Table 3.2 show that our LPS estimation

procedure exhibits good performance for the three different noise levels.

Nonsignificant biases are observed and the estimated coverage probabil-

ities are close to their nominal value in each setting. Furthermore, LPS

and gam() have similar results regarding the ESE and RMSE.

In Figure 3.5, we show the LPS estimation of the smooth additive terms

(gray curves) and the pointwise median (dashed) curves across all repli-

cations when 50 B-splines are used for each function. The estimated

curves are close to their target on the entire domain except on the bound-

aries where the estimates exhibit larger variability.
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Figure 3.5: Estimation of the smooth functions f1, f2 and f3 for S =

500 replications (one gray curve per dataset), sample size n = 300 and

σ = 0.40 using 50 B-splines for each function. The solid (black) curve is

the true function and the dashed curve is the pointwise median of the

500 estimated curves.
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3.8.2 Coverage of the smooth functions fj

To assess the quality of approximate pointwise credible intervals for a

function fj , one can work from a Bayesian perspective and consider a

uniform prior on the probability πsj that the function fj at point xsj
will be contained in the constructed (1 − α) × 100% credible interval.

This is denoted by πsj ∼ U(0, 1). In addition, let Snum denote the num-

ber of constructed credible intervals at xsj containing the value fj(xsj)

among S datasets. The variable Snum follows a Binomial distribution,

i.e. Snum ∼ Bin(S, πsj). From Bayes’ rule, we have:

p(πsj |D) ∝ P (D|πsj) p(πsj)
∝ πsnumsj (1− πsj)

S−snum .

Hence, a posteriori (πsj |D) ∼ Beta(1+ snum, 1+S− snum). We say that

the constructed credible interval at xsj is compatible with the nominal

value (1− α)× 100% at the 99% level provided (1− α) falls within the

0.5th and 99.5th quantiles of the Beta(1+snum, 1+S−snum) distribution.
This method is equivalent to the hypothesis test H0 : πsj = (1−α) ver-

sus H1 : πsj ̸= (1−α). If (1−α) falls within the 99% posterior credible

interval for πsj , then we do not reject the null. Note also that the pos-

terior mode of the Beta distribution (πsj |D)mode = snum/S corresponds

to the point estimate of the coverage probability.

Tables 3.3 and 3.4 show the coverage estimates of 90% and 95% pointwise

credible intervals for the functions f1, f2 and f3 at selected points of their

domain and for three different noise levels with 50 B-splines for each

function. The frequentist coverage of credible intervals are compatible

with their nominal value for all the considered noise levels for the LPS

and gam() methods.

3.9 Application to Milan mortality data

In this section, the LPS methodology is illustrated on the Milan mor-

tality data (Ruppert et al., 2003) available in the SemiPar package on

CRAN (https://CRAN.R-project.org/package=SemiPar). The data

contains observations on n = 3652 consecutive days between January

1st, 1980 and December 30th, 1989 for the city of Milan in Italy for air

pollution indicators and health variables.

https://CRAN.R-project.org/package=SemiPar
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The objective is to study how air pollution and other meteorological

indicators impact mortality using an additive partial linear model. In

that endeavor, the square root of the total number of death (Mortality)

is taken to be the response variable. Following Ruppert et al. (2003),

the variable TSP measuring the total suspended particles in ambient

air enters as a linear predictor. The dichotomous variable Holiday is

an indicator of public holiday (1=public holiday; 0=otherwise) and is

also naturally added in the linear part of the model. The remaining

predictors are modeled as smooth functions, namely: the mean daily

temperature in ◦C (Temperature), the relative humidity (Humidity), a

measure of sulfur dioxide (SO2) in ambient air and the number of days

(Numdays) elapsed as from December 31st, 1979. Figure 3.6 provides a

graphical illustration for some data variables.
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Figure 3.6: The Milan mortality data. Top-left: Q-Q plot of the re-

sponse variable Mortality. Top-right: Scatter plot of Mortality and

Temperature. Bottom-left: Scatter plot of Mortality across Humidity.

Bottom-right: Scatter plot of the response and SO2.
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The quantile-quantile plot of the response variable on the top-left graph

confirms that Mortality is approximately normally distributed. The

scatter plots of the response with Temperature, Humidity and SO2 and

the associated locally estimated scatterplot smoothing (LOESS) fit in

red suggest that the latter variables are nonlinearly related to Mortal-

ity. The additive model for the mortality data is written as:

Mortalityi = β0 + β1TSPi + β2Holidayi + f1(Temperaturei)

+f2(Humidityi) + f3(SO2i) + f4(Numdaysi) + εi,

for i = 1, . . . , n, with i.i.d. errors εi ∼ N (0, σ2). The smooth functions

fj , j = 1, 2, 3 are modeled with 35 cubic B-splines and a second-order

penalty. The B-spline basis for a smooth term fj is defined over the

domain [xj,min, xj,max], i.e. over the range of its observed values xj . Es-

timation results for TSP and Holiday are summarized in Table 3.5. TSP

has a small positive and significant effect on the response, while Holiday

has a negative and significant effect.

Parameters Estimates CI 95% sdpost

β1 (TSP) 0.0006 [ 0.0001; 0.0010] 0.0002

β2 (Holiday) -0.1240 [-0.2342; -0.0164] 0.0558

Table 3.5: Estimation results for the parametric linear part of the ad-

ditive model. The second column is the parameter estimate, the third

column gives the associated 95% credible interval and the last column

is the posterior standard deviation.

Figure 3.7 shows the estimated additive terms with approximate 95%

pointwise credible intervals. We see that the conditional impact of Tem-

perature on the mean response is slightly decreasing until approximately

25◦C after which an explosive increase indicates that higher tempera-

tures are associated to an important increase in the expected number of

deaths. Humidity seems to have no significant impact on the response

as it remains stable around zero. An increase in SO2 levels from 0 to 180

is associated to an increase in average mortality. However, further in-

crease of the SO2 concentrations in ambient air seems to have negligible

impact on the mean response as the smooth estimated term remains flat

with a plausible zero value for the slope. For Numdays, we observe the
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seasonal pattern already reported in Ruppert et al. (2003), i.e. average

mortality fluctuates over seasons with spikes arising during winter.
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Figure 3.7: Estimates of the nonlinear predictors with 95% pointwise

credible interval.

3.10 Conclusion

The core contribution of this chapter is to adapt the Laplace-P-spline

(LPS) methodology for fast approximate Bayesian inference in additive

models with Gaussian errors. Working from a Bayesian perspective, we

model the smooth additive terms with penalized B-splines and impose

a Gaussian prior on the vector of regression and spline parameters.

After having introduced the theoretical foundations of the model, we

derive the conditional posterior of the latent vector and use the latter

to obtain an expression of the marginal posterior of the penalty vector.

Serious efforts have been invested in the derivation of the gradient and

Hessian of the log posterior of the (log-) penalty vector as it enables to

avoid numerical differentiation to obtain its posterior mode and hence

accelerates the computational process behind Newton-Raphson.
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To efficiently explore the posterior penalty space, we develop a strategy

which consists in adjusting a skew-normal distribution to the conditional

posterior of the (log-) penalty parameters at their modal value. This

method has the merit of capturing potential asymmetries in the pos-

terior penalty and hence allows a precise grid-based exploration. The

constructed grid is then used to compute an approximate version of the

joint posterior for the regression and spline parameters resulting in a

finite mixture of multivariate Gaussian distributions from which point

and set estimators can be derived.

The main limitation behind a grid exploration of the posterior penalty

space is an exponentially growing computational budget with the num-

ber q of smooth functions in the additive model. To alleviate the prob-

lem, we propose a hybrid approach that alternates between a grid for

small or moderate q and a classic MCMC algorithm when q is above

a certain threshold. This is thoroughly discussed in Chapter 4 in the

framework of generalized additive models. It is also worth noting that

our LPS algorithm requires a low computational budget even though

the modeling approach is fully Bayesian. An in-depth study of compu-

tational aspects is presented in the next chapter.



CHAPTER 4
Laplace approximation for fast
Bayesian inference in generalized
additive models based on
P-splines
This chapter is based on: Gressani, O. and Lambert, P. (2021). Laplace approxima-

tions for fast Bayesian inference in generalized additive models based on P-splines,

Computational Statistics and Data Analysis, Volume 154. https://doi.org/10.

1016/j.csda.2020.107088

4.1 Motivation

Generalized additive models (GAMs) (Hastie and Tibshirani, 1986, 1987)

extend generalized linear models (Nelder andWedderburn, 1972) by hav-

ing nonlinear smooth functions of quantitative covariates entering the

linear predictor: they enable to relate in a flexible way covariates to the

mean of a conditional distribution in the exponential family. The mono-

graph of Hastie and Tibshirani (1990) gives a thorough introduction to

additive regression structures and largely contributed to the dissemina-

tion of this model class. Ruppert et al. (2003) and Wood (2017) pro-

vide a complete and comprehensive treatment of GAMs, emphasizing

on semiparametric methods and penalized regression splines. There ex-

ists a large variety of regression splines in the literature for modeling the

107
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smooth terms in a GAM, for instance P-splines (Eilers and Marx, 1996),

thin plate splines (Wood, 2003), O’Sullivan penalized splines (Wand and

Ormerod, 2008) or adaptive splines (Krivobokova et al., 2008) to cite the

most popular instances. The material presented here focuses exclusively

on P-spline smoothers for two main reasons. First, the penalty matrix

can be effortlessly constructed from basic difference formulas, keeping

the penalization scheme simple and the P-spline approach numerically

stable. Second, the attractiveness of P-splines lies in its rather natural

extension to a Bayesian setting (Lang and Brezger, 2004) and from the

efficiency of working with sparse bases and penalties for sampling-free

approximate Bayesian inference or Markov chain Monte Carlo (MCMC)

methods. Marx and Eilers (1998) are the first to revisit GAMs with

P-splines. They developed the P-GAM technique where all the smooth

terms are estimated simultaneously and the optimal penalty choice is

controlled by information criterion or cross validation.

As MCMC techniques can be subject to poor chain convergence and tend

to carry a heavy computational burden, Rue et al. (2009) introduced an

approximate Bayesian methodology based on Laplace approximations

termed Integrated Nested Laplace Approximations (INLA), a completely

sampling-free framework that delivers accurate and fast approximations

of posterior marginals in structured additive regression models. More re-

cent articles on fast approximate likelihood or Bayesian-based inference

include Luts et al. (2014), Wand (2017) and Hui et al. (2019) among

others. Although INLA is a well-tailored approach for making inference

in a variety of statistical models, there is room for further computational

improvements when considering the specific class of GAMs. In particu-

lar, the use of numerical differentiation techniques in INLA to obtain fi-

nite difference approximations to the gradient and Hessian matrix of the

posterior penalty vector can be replaced by their exact analytical expres-

sions, yielding more efficient algorithms for model fitting. Furthermore,

as the computational cost grows exponentially with the dimension of the

penalty vector, in grid-based derivation of the marginal posterior of the

regression parameters, alternative strategies are required to explore the

posterior penalty space when the number of additive terms is large.

Taken separately, P-splines and INLA have made an impressive impact

in the statistical community and initiated a flourishing literature in di-
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versified domains (see e.g. Eilers et al., 2015; Rue et al., 2017), yet few

references attempted to unify the strength of both approaches. In the

present article, we borrow some ideas from INLA and combine them

with P-splines to design the Laplace-P-spline (LPS) methodology, a

novel unified approach for approximate Bayesian inference in GAMs.

Our methodology is free of the numerical differentiation scheme found

in INLA, as it relies on closed analytical expressions for the gradient

and Hessian required during computation. It enables not only to fas-

ten our code, but also offers a clear insight on the equations governing

the implementation of the model. Moreover, we exploit this analytical

availability to develop a novel cost-effective grid algorithm to explore the

posterior of the hyperparameters corresponding, in our specific context,

to the penalty parameters controlling the smoothness of each additive

term. The method accounts for possible asymmetries in the posterior

hyperparameter space by applying a moment-matching technique with

reference to the skew-normal family. Finally, in response to the “curse of

dimensionality” related to the increase in computational resources with

the hyperparameter dimension, we suggest to embed a regular MCMC

algorithm to explore the hyperparameter posterior instead of the classic

grid exploration when the dimension grows above a certain threshold.

The latter idea of combining Laplace approximations with MCMC can

be found in Yoon and Wilson (2011) and more recently in Gómez-Rubio

and Rue (2018).

The remainder of the chapter is outlined as follows. In Section 4.2 the

Bayesian Laplace-P-spline GAM is formulated and the Laplace approx-

imation to the conditional posterior of latent variables is derived. To

efficiently explore the approximate posterior of the penalty vector, we

propose a strategy that alternates between a deterministic grid and an

independence Metropolis-Hastings sampler depending on the number of

smooth components. The chosen penalty values are then used to ap-

proximate the marginal posterior for latent variables along with their

associated pointwise credible intervals. A detailed simulation study is

presented in Section 4.3 together with comparisons against a popular

benchmark method. Section 4.4 illustrates the LPS model on two real

datasets and Section 4.5 closes the chapter with concluding remarks and

sketches future research prospects. The blapsr package (cf. Chapter 5)

contains a routine called gamlps() to fit GAMs with LPS.
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4.2 The Laplace-P-spline generalized additive

model

4.2.1 Flexible modeling with P-splines

We consider a GAM where the response variable has a distribution be-

longing to the one-parameter exponential family yi ∼ EF(γi,κ) charac-
terized by densities of the form:

p(yi; γi,κ) = exp

(
yiγi − s(γi)

κ
+ c(yi,κ)

)
, (4.1)

where s(·) is a twice continuously differentiable real-valued function and

c(·, ·) another real function, κ > 0 is a known scale or dispersion pa-

rameter and γi is the natural or canonical parameter. Using well-known

properties of the score function (McCullagh and Nelder, 1989), one can

show that the mean and variance of the response are E(yi) := µi = s′(γi)

and Var(yi) = κs′′(γi) respectively. Appendix D1 gives a detailed ac-

count of the one-parameter exponential family distributions used in this

chapter. Let D = {(yi,xi, zi) : i = 1, . . . , n} be a sample of n indepen-

dent observations, where xi = (xi1, . . . , xiq)
⊤ is a vector of continuous

covariates and zi = (zi1, . . . , zip)
⊤ a vector of additional covariates (pos-

sibly categorical). The link function g(·) relates the mean response to

the additive predictor as follows:

g(µi) := ϱi = β0 +

p∑

l=1

βlzil +

q∑

j=1

fj(xij), i = 1, . . . , n. (4.2)

In the spirit of the P-spline approach proposed in Eilers and Marx (1996),

the unknown smooth functions fj , j = 1, . . . , q are modeled with rich

cubic B-spline bases and a discrete penalty on neighboring spline coef-

ficients is imposed for controlling the roughness of the fit. Mathemati-

cally:

fj(xij) =

K∑

k=1

θjkbjk(xij), j = 1, . . . , q, (4.3)
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where for simplicity the same number K of basis functions bjk(·) is as-

sumed for every fj . The vector of B-spline coefficients associated to

function fj is θj = (θj1, . . . , θjK)⊤, while the collection of all spline co-

efficients present in the model is θ = (θ⊤
1 , . . . ,θ

⊤
q )

⊤ and the vector of

B-spline functions at xij is written as bj(xij) = (bj1(xij), . . . , bjK(xij))
⊤.

Model flexibility is compensated by a roughness penalty on finite differ-

ences of the coefficients of contiguous B-splines, θ⊤P(λ)θ, with block

diagonal matrix P(λ) written compactly using a Kronecker product (cf.

Section 3.2.1), where λ is vector of positive penalty parameters. From

a Bayesian perspective, Lang and Brezger (2004) suggest to obtain the

roughness penalty by imposing a multivariate Gaussian prior on the

spline amplitudes θ|λ ∼ Ndim(θ)

(
0,P−1(λ)

)
. Furthermore, a Gaussian

prior is assumed on the regression coefficients β = (β0, . . . , βp)
⊤, more

specifically β ∼ Ndim(β)(0, V
−1
β ) with matrix Vβ = ζIp+1 and small pre-

cision (say ζ = 10−5). The latent vector of the model is written as

ξ = (β⊤,θ⊤)⊤ and includes the regression and spline coefficients with

prior distribution ξ|λ ∼ Ndim(ξ)

(
0,
(
Qλ

ξ

)−1)
and precision matrix:

Qλ
ξ := Qξ(λ) =

(
Vβ 0

0 P(λ)

)
.

Covariates zi are centered around their mean value z̄l = n−1
∑n

i=1 zil, l =

1, . . . , p and identifiability constraints are imposed as in Section 3.2.2

yielding centered B-spline matrices B̃j with K − 1 columns and a latent

vector of dimension dim(ξ) = q×(K−1)+p+1. This is to be contrasted

with the model setting in INLA, where the latent field dimension grows

with sample size n.

Following Jullion and Lambert (2007), robust priors are specified on the

roughness penalty parameters with a conjugate Gamma family having a

hierarchical structure λj |δj ∼ G(ν/2, (νδj)/2), j = 1, . . . , q. An uninfor-

mative distribution is imposed on the hyperparameter δj ∼ G(aδ, bδ), j =
1, . . . , q with aδ = bδ = 10−4 and ν = 3. The penalty parameters are

gathered in the vector η = (λ⊤, δ⊤)⊤. Taking into account the iden-

tifiability constraint, the additive predictor in (4.2) can be expressed

compactly as ϱ = Bξ, where B is a side by side configuration of design

matrices, B = [Z : B̃1 : . . . : B̃q] and corresponds to the full design

matrix of the model. The Bayesian model is summarized as follows:
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yi|ξ ∼ EF(γi,κ), i = 1, . . . , n,

θ|λ ∼ Ndim(θ)

(
0,P−1(λ)

)
,

ξ|λ ∼ Ndim(ξ)

(
0,
(
Qλ

ξ

)−1)
,

λj |δj ∼ G(ν/2, (νδj)/2), j = 1, . . . , q,

δj ∼ G(aδ, bδ), j = 1, . . . , q.

4.2.2 Likelihood, Score function and Fisher information

The log-likelihood of a response variable having a density as in (4.1) is

ℓ(ξ;D) = (1/κ)
∑n

i=1 (yiγi − s(γi)) + c, with c :=
∑n

i=1 c(yi,κ) for ease
of notation. The hth element of the score function for ξ is:

∂ℓ(ξ;D)

∂ξh
=

1

κ

n∑

i=1

(
yi
∂γi
∂ξh

− ∂s(γi)

∂γi

∂γi
∂ξh

)

=
1

κ

n∑

i=1

(
yi − s′(γi)

) ∂γi
∂ξh

=
1

κ

n∑

i=1

(
yi − µi

)∂γi
∂µi

∂µi
∂ϱi

∂ϱi
∂ξh

.

As µi = s′(γi) and s′(·) is a strictly monotonic function, it holds from

the inverse function rule that ∂γi/∂µi = 1/(∂µi/∂γi) = 1/s′′(γi). Also,

since ϱi = g(µi), we have ∂µi/∂ϱi = 1/(∂ϱi/∂µi) = 1/g′(µi). Finally,

∂ϱi/ξh = Bih is the entry in the ith row and hth column of the design

matrix B. Using these derivative results, one obtains:

∂ℓ(ξ;D)

∂ξh
=

1

κ

n∑

i=1

(yi − µi)
1

s′′(γi)

1

g′(µi)
Bih

=
n∑

i=1

(yi − µi)

V ar(yi)

1

g′(µi)
Bih

=

n∑

i=1

wi(yi − µi)g
′(µi)Bih,

with weights wi :=
[
V ar(yi)[g

′(µi)]
2
]−1

. Also, define the following diag-

onal matrices W := diag(w1, . . . , wn) and Dg = diag(g′(µ1), . . . , g
′(µn)),
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so that the score is written as:

∇ξℓ(ξ;D) = B⊤WDg(y − µ). (4.4)

Another quantity of interest is the expected Fisher information ma-

trix defined as the expected value of the negative Hessian of the log-

likelihood. The latter is obtained by computing the following partial

derivatives for s, h = 1, . . . ,dim(ξ):

∂2ℓ(ξ;D)

∂ξs∂ξh

=
∂

∂ξs

(
∂ℓ(ξ;D)

∂ξh

)

=
∂

∂ξs

(
n∑

i=1

(yi − µi)wig
′(µi)Bih

)

=
n∑

i=1

(
∂

∂ξs
(yi − µi)

)
wig

′(µi)Bih +
n∑

i=1

(yi − µi)

(
∂

∂ξs
wig

′(µi)

)
Bih.

As ∂(yi−µi)/∂ξs = −(∂µi/∂ϱi) (∂ϱi/∂ξs) = (−1/g′(µi))Bis, we recover:

∂2ℓ(ξ;D)

∂ξs∂ξh
= −

n∑

i=1

wiBisBih +
n∑

i=1

(yi − µi)

(
∂

∂ξs
wig

′(µi)

)
Bih.(4.5)

The expected value of the second term in the right-hand side of (4.5)

equals zero 1, so the expected Fisher information matrix has entries:

Ish = E

(
−∂

2ℓ(ξ;D)

∂ξs∂ξh

)
=

n∑

i=1

wiBisBih. (4.6)

In matrix notation:

I(ξ) = E

(
−∂

2ℓ(ξ;D)

∂ξ∂ξ⊤

)
= E

(
−∇2

ξℓ(ξ;D)
)
= B⊤WB. (4.7)

1Note that (∂wig
′(µi)/∂ξs) = (∂/∂ξs)(κs′′(γi)g′(µi))

−1. Recall that with a canon-

ical link, g(µi) = (s′)−1(µi) = γi, hence g′(µi) = 1/(s′′((s′)−1(µi))) = 1/s′′(γi) such

that (∂wig
′(µi)/∂ξs) = 0 and the expected and observed Fisher information are iden-

tical, i.e. E
(
−∂2ℓ(ξ;D)/∂ξ∂ξ⊤) = −∂2ℓ(ξ;D)/∂ξ∂ξ⊤.
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4.2.3 Approximated conditional posterior of ξ

Using Bayes’ theorem, the conditional posterior of the latent vector is

proportional to the product of the likelihood and prior, which can be

written as p(ξ|λ,D) ∝ exp
(
ℓ(ξ;D)− 0.5ξ⊤Qλ

ξ ξ
)
. Using the Newton-

Raphson algorithm, we compute the mode ξ̂λ of the conditional poste-

rior p(ξ|λ,D) and use Laplace’s method to approximate the latter by a

normal density denoted by p̃G(ξ|λ,D). After convergence of the itera-

tive algorithm, we recover a Gaussian centered around ξ̂λ = (B⊤W̃B +

Qλ
ξ )

−1ϖ̃ with variance-covariance matrix equal to the inverse of the

sum of the negative Hessian of the log-likelihood and the precision ma-

trix Qλ
ξ , i.e. Σ̂λ = (B⊤W̃B +Qλ

ξ )
−1, where W̃ is the weight matrix at

convergence and ϖ̃ is the vector at convergence that results from the

sequence ϖ(0),ϖ(1),ϖ(2), . . . , with ϖ(0) := (1/κ)B⊤(y − µ
(
ξ(0)
))

+

B⊤W
(
ξ(0)
)
Bξ(0) computed from an initial guess ξ(0) of the latent vec-

tor. The Laplace approximation p̃G(ξ|λ,D) is used to approximate the

integrand entering the computation of the marginal posterior for ξ:

p(ξ|D) =

∫

Rq
++

p(ξ|λ,D) p(λ|D) dλ. (4.8)

Quadrature points to compute (4.8) will be obtained in the next section

using an approximation of the marginal posterior p(λ|D) for the vector

of penalty parameters.

4.2.4 Marginal posterior of the penalty parameters

An indispensable intermediate step to reach an approximated version for

the marginal posterior of the regression and spline variables ξ is to obtain

the marginal posterior of the vector λ of penalty parameters. In that

endeavor, we first derive an approximation of p(η|D) in the philosophy

of Leonard (1982), Tierney and Kadane (1986) and Rue et al. (2009)

and show how δ can be integrated out, resulting in an approximation of

the marginal posterior for the roughness penalty vector λ. The gradient

and Hessian of that log posterior are analytically derived and will prove

to be very useful to explore the support of the posterior distribution of

the penalty vector.
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4.2.5 Approximation to the posterior penalty vector

The posterior of the hyperparameter vector is given by:

p(η|D) =
p(ξ,η|D)

p(ξ|η,D)

∝ L(ξ;D)p(ξ|η)p(η)
p(ξ|η,D)

∝
exp (ℓ(ξ;D)) p(ξ|λ)

(
q∏

j=1

p(λj |δj)
)(

q∏

j=1

p(δj)

)

p(ξ|λ,D)
,

where L(ξ;D) is the likelihood function. An approximation p̃(η|D) to

the above marginal posterior of η is obtained by substituting the Laplace

approximation to p(ξ|λ,D) (cf. Section 4.2.3) and by evaluating the

resulting expression at the posterior mode ξ̂λ.

Let us express the natural parameter in the generalized additive model

as γi = ϱi = b⊤
i ξ, with b⊤

i the row vector corresponding to the ith

row of matrix B. Using the previous suggestion and noting that the

determinant of the block diagonal matrix involved in the prior p(ξ|λ) is
given by |Qλ

ξ |
1
2 ∝∏q

j=1 λ
(K−1)/2
j , we obtain:

p̃(η|D) ∝ exp

(
1

κ

n∑

i=1

[
yib

⊤
i ξ̂λ − s

(
b⊤
i ξ̂λ

)]
− 1

2
ξ̂
⊤
λQ

λ
ξ ξ̂λ

)

×
(

q∏

j=1

δ
( ν
2
+aδ−1)

j exp
(
−δj

(
bδ +

ν

2
λj

))) ( q∏

j=1

λ
( ν+K−3

2 )
j

)

× |B⊤W̃B +Qλ
ξ |−

1
2 . (4.9)

As Gamma priors have been chosen for the penalty parameters λj and

δj , one recognizes in (4.9) the conditional conjugacy for δj , as δj |λj ,D ∼
G
(
ν
2 + aδ, bδ +

ν
2λj
)
. Under these prior specifications, the integration of

(4.9) with respect to δ is tractable and yields the (approximate) marginal

penalty posterior:
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p̃(λ|D) =

∫ +∞

0
· · ·
∫ +∞

0
p̃(η|D) dδ1 . . . dδq

∝ |B⊤W̃B +Qλ
ξ |−

1
2 exp

(
1

κ

n∑

i=1

[
yib

⊤
i ξ̂λ − s

(
b⊤
i ξ̂λ

)]
− 1

2
ξ̂
⊤
λQ

λ
ξ ξ̂λ

)

×
(

q∏

j=1

λ
( ν+K−3

2 )
j

)(
q∏

j=1

(
bδ +

ν

2
λj

)−( ν
2
+aδ)

)
. (4.10)

Using a log transform on the penalty parameters vj = log(λj), j =

1, . . . , q and using the multivariate transformation method on (4.10), we

obtain the following expression for the (log) posterior of the log penalty

vector:

log p̃(v|D) =̇ −1

2
log |B⊤W̃B +Qv

ξ |+
ν +K − 1

2

q∑

j=1

vj

+
1

κ

n∑

i=1

yib
⊤
i ξ̂v − 1

κ

n∑

i=1

s
(
b⊤
i ξ̂v

)
− 1

2
ξ̂
⊤
vQ

v
ξ ξ̂v

−
(ν
2
+ aδ

) q∑

j=1

log
(
bδ +

ν

2
exp(vj)

)
, (4.11)

where Qv
ξ is the symmetric block diagonal matrix:

Qv
ξ =

(
ζIp+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag(exp(v1), . . . , exp(vq))⊗ P

)

and ξ̂v :=
(
B⊤W̃B +Qv

ξ

)−1
ϖ̃. The gradient ∇v log p̃(v|D) and Hes-

sian ∇2
v log p̃(v|D) of expression (4.11) are analytically derived in Ap-

pendix D2. These expressions will turn to be useful to explore the

marginal posterior of the penalty parameters.

4.2.6 Strategy to explore the posterior penalty space

An approximation to the marginal posterior of the latent variables ξ (in-

cluding the regression and spline parameters in the generalized additive

model) can be obtained by integrating out the penalty parameters as

in (4.8). Obtaining such a quadrature requires to explore the posterior
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of the penalty parameters λ = exp(v). Two strategies are suggested

according to the dimension q of the penalty vector. When q is small

or moderate (say q ≤ 4), a grid strategy is proposed that is sensitive

to asymmetries in the response surface p̃(v|D), with the skew-normal

family of distributions forming the backbone to handle asymmetry. As

the computational cost of constructing a grid grows with dimension q,

we suggest an alternative strategy relying on MCMC to draw a set of

points in the domain of the posterior of the penalty parameters when q

is large. This hybrid approach alternates between a deterministic grid

and a sampling scheme, giving to the end-user a complete and rapid

tool to fit GAMs in a full Bayesian framework even when the number of

smooth functions is large.

A preliminary milestone for both strategies is to find the posterior mode

v̂ of log p̃(v|D) as it represents the “center of gravity” around which

the exploration will depart. To this end, a Newton-Raphson algorithm

is implemented in which we take advantage of the analytical forms for

the gradient and Hessian of log p̃(v|D) to speed up the computational

process. Once v̂ is obtained, we proceed with posterior exploration.

The skew-normal approximation method has already been presented in

Section 3.5.1 and is therefore omitted here.

4.2.7 Independence sampling when q is large

When the number of smooth functions q in the GAM is above a certain

threshold (say q > 4), a grid-based strategy becomes too demanding as

the number of quadrature points (following from the Cartesian product

of the grid points for each penalty parameter exp(vj), j = 1, . . . , q) ex-

plodes. A cost-effective alternative relies on MCMC to sample values

from the posterior p̃(v|D). More thoroughly, an independence sam-

pler is implemented using a multivariate Student-t proposal distribution

tϑ(v̂, (−H∗)−1) with density h(v|v̂), degrees of freedom (ϑ = 3, say),

a mean set at the posterior mode v̂, and variance-covariance matrix

(ϑ/(ϑ− 2))(−H∗)−1, where H∗ = ∇2
v log p̃(v|D)|v=v̂.

Algorithm 3 summarizes the strategy to explore p̃(v|D). When q ≤ 4,

a grid is constructed using a Cartesian product of marginal grids de-

limited by quantiles SNj,α/2 of approximating skew-normal densities.

The grid is also filtered by removing the points satisfying the inequality
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R(v) = p(v|D)/p(v̂|D) < exp
(
− 0.5χ2

q;1−α

)
(cf. Section 3.5.2). Ex-

ploration in larger dimensions relies on the independence Metropolis-

Hastings sampler. This algorithm will be used in the next section to

approximate the marginal posterior of the latent vector.

Algorithm 3: Exploration of p̃(v|D)

1: If q ≤ 4 do (Grid strategy)

2: for j = 1, . . . , q do

3: Compute the skew-normal match SNj(µ
∗, ς∗2, ρ∗) to p̃(vj |v̂−j ,D).

4: Construct a Cartesian grid {vjm}Mm=1 from SNj,0.025 to SNj,0.975.

5: end for

6: Compute Cartesian product of univariate grids C = ×q
j=1{vjm}Mm=1.

7: Choose α and keep M̃ points in C for whichR(v) ≥ exp
(
−.5χ2

q;1−α

)
.

8: else do (Independence sampling)

9: Choose an initial value v(0) = v̂.

10: for m = 1, . . . , M̃ do

11: Generate v(prop) ∼ h(v|v̂).
12: Compute the acceptance probability

α = min

(
1,
p̃
(
v(prop)|D

)
h
(
v(m−1)|v̂

)

p̃
(
v(m−1)|D

)
h
(
v(prop)|v̂

)
)
.

13: Draw u ∼ U(0, 1).
14: If u ≤ α, set v(m) = v(prop), else set v(m) = v(m−1).

15: end for

4.2.8 Approximate posterior for the vector of regression

and spline parameters

Using the Laplace approximation discussed in Section 4.2.3, the poste-

rior of the vector ξ can be obtained as follows:

p(ξ|D) =

∫

Rq
++

p(ξ|λ,D) p(λ|D) dλ
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≈
∫

Rq
++

p̃G(ξ|λ,D) p̃(λ|D) dλ

≈
∫

Rq

p̃G(ξ| exp(v),D) p̃(v|D) dv, (4.12)

where the last line follows from the change of variable in log-scale. Using

Algorithm 3, we get a set of quadrature points {v(m)}M̃m=1. Defining:

ωm =
p̃(v(m)|D)

∑M̃
m=1 p̃(v

(m)|D)
, m = 1, . . . , M̃ , (4.13)

when q ≤ 4 and ωm = 1/M̃ otherwise, Equation (4.12) suggests to

approximate p(ξ|D) by:

p̃(ξ|D) =
M̃∑

m=1

ωm Ndim(ξ)

(
ξ̂v(m) , Σ̂v(m)

)
, (4.14)

where ξ̂v(m) =
(
B⊤W̃B +Qv(m)

ξ

)−1
ϖ̃ and Σ̂v(m) =

(
B⊤W̃B +Qv(m)

ξ

)−1

are the conditional posterior mode and variance-covariance matrix re-

sulting from the iterative Laplace approximations proposed in Section

4.2.3. Note that the computational cost of reevaluating the conditional

posterior mode and variance-covariance for each penalty exp(v(m)) in

the grid can be reduced by adding an extra layer of approximation that

consists in replacing W̃ in the Newton-Raphson procedure by its value

W̃v̂ at the posterior mode. A point estimate for the latent vector is

given by the posterior mean of (4.14), which is a mixture of the location

components, i.e. ξ̂ =
∑M̃

m=1 ωm ξ̂v(m) .

4.2.9 Credible intervals

Approximate pointwise credible intervals for ξh, h = 1, . . . ,dim(ξ) can

be straightforwardly obtained by starting from the finite mixture given

in (4.14). The approximate posterior for the hth element is p̃(ξh|D) =
∑M̃

m=1 ωm N1

(
ξ̂h,v(m) , Σ̂hh,v(m)

)
, where ξ̂h,v(m) is the hth entry of vector

ξ̂v(m) and Σ̂hh,v(m) is the hth entry on the diagonal of matrix Σ̂v(m) . The

latter expression can be used to construct a (1−α)×100% quantile-based

credible interval for ξh. To obtain pointwise set estimates of a smooth
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function fj , let {xl}Ll=1 be an equidistant (fine) grid on the domain of

fj and ξθj
be the subvector of ξ corresponding to the spline vector

θj = (θj1, . . . , θjK−1)
⊤. Also, denote by b̃l the vector of B-splines in the

basis evaluated at xl. The function fj at point xl is thus modeled as

fj(xl|ξθj
) = b̃⊤

l ξθj
and from (4.14) the posterior of ξθj

is approximated

by the finite mixture:

p̃(ξθj
|D) =

M̃∑

m=1

ωm NK−1

(
ξ̂θj ,v(m) , Σ̂θj ,v(m)

)
, (4.15)

where Σ̂θj ,v(m) is a submatrix of Σ̂v(m) corresponding to the variance-

covariance matrix of ξθj
. As fj(xl|ξθj

) is a linear combination of the

spline vector, a natural candidate to approximate p(fj(xl|ξθj
)|D) is to

use a mixture of univariate normals:

p̃(fj(xl|ξθj
)|D) =

M̃∑

m=1

ωm N1

(
b̃⊤
l ξ̂θj ,v(m) , b̃⊤

l Σ̂θj ,v(m)b̃l

)
.

A quantile-based credible interval for fj at point xl can easily be com-

puted from the above (approximate) univariate posterior.

4.3 Simulations

The performance of the LPS approach (with cubic B-splines and a third

order penalty) is assessed through different simulation scenarios and

compared with results obtained using the gam() function from themgcv

package in R (Wood, 2017). The reader is referred to Section 3.8 for the

set-up of the input arguments in the gam() routine.

4.3.1 Estimation of the parameters in the linear part

The simulation setting entails S = 500 replications of a data set of size

n = 300 with three covariates in the linear part generated independently

as zi1 ∼ Bern(0.5), zi2 ∼ N (0, 1) and zi3 ∼ N (0, 1), for i = 1, . . . , n and

coefficients β0 = −1.50, β1 = 0.70, β2 = −0.80, β3 = 0.40. The covari-

ates for the smooth functions are independent draws from the uniform

distribution on the domain [−1, 1]. The smooth additive terms coincide

with the functions:
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f1(x1) = −4x61 + 2x21 + cos(2πx1)− 0.1,

f2(x2) = 3x52 + 2 sin(4x2) + 1.5x22 − 0.5,

f3(x3) = sin(3πx3).

The above functions are specified as a linear combination of cubic B-

splines with a third order penalty and K = 15 B-splines in [−1, 1]. The

frequentist properties of the Bayesian estimators are measured by the

bias, the empirical standard error (ESE), the root mean square error

(RMSE) and coverage probability (CP) of the 90% and 95% (pointwise)

credible intervals for the linear coefficients. Four scenarios are consid-

ered for the response variable, namely (I) Generation from a Poisson

distribution yi ∼ Poisson(µi), with µi = exp(ϱi) to illustrate the case

of count data, (II) Generation from a Gaussian yi ∼ N (µi, σ
2 = 0.3),

with µi = ϱi, (III) Generation from a Binomial yi ∼ Bin(15, pi) and

(IV) Generation from a Bernoulli yi ∼ Bern(pi) to illustrate the case of

binary responses with success probability pi = exp(ϱi)/(1 + exp(ϱi)) for

Binomial and Bernoulli cases.

Table 4.1 shows the simulation results and comparisons with the gam()

function. For all the considered data types, the Laplace-P-spline ap-

proach exhibits nonsignificant biases and the estimated coverage proba-

bilities are consistent with their nominal level. Also, the ESE and RMSE

show a behavior comparable to what is observed with the gam() out-

put. For the Bernoulli scenario, ESEs are smaller with LPS, but biases

are slightly larger than with gam(). The frequentist coverage of credi-

ble intervals remain compatible whatever the method used. A notable

feature of the Laplace-P-spline methodology is that it requires a low

computational cost despite being fully Bayesian. In fact, our algorithm

(underlying a fully Bayesian approach) is purely written in R (without

any parallelization) and takes approximately 0.90 seconds per dataset in

the above scenario as compared to 0.05 seconds for the gam() function

(coding an empirical Bayes approach) for simulations performed on a

machine equipped with an Intel Xeon E-2186M CPU running at a clock

speed of 2.90 GHz.
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Considering that the algorithm behind gam() is neither fully Bayesian

nor entirely written in R (as most of the script relies on C code which

is much faster), the Laplace-P-spline toolkit can be considered a seri-

ous competitor for approximate full Bayesian inference in GAMs when

smooth functions are modeled with P-splines.

4.3.2 Estimation of the additive terms fj

The coverage properties of approximate 90% pointwise credible intervals

for the additive terms f1, f2 and f3 are reported in Table 4.2 for selected

values of the covariate on [−1, 1]. An asterisk superscript is added to the

estimated coverage to indicate incompatibility with the nominal value.

Results of the gam() function are labeled “MGCV”.

In addition to the LPS approach, Table 4.2 also highlights the coverage

performance of LPSMAP, where each penalty parameter is replaced by

its posterior mode λ̂ = exp(v̂) in our Laplace-P-spline method. For

LPSMAP the uncertainty in the selection of λ is ignored (as in Wood’s

approach), such that the mixture in Equation (4.15) is omitted and the

point estimate of the latent vector and its associated variance-covariance

matrix become ξ̂v̂ =
(
B⊤W̃B +Qv̂

ξ

)−1
ϖ̃ and Σ̂v̂ =

(
B⊤W̃B +Qv̂

ξ

)−1

respectively. With LPSMAP, an approximate (1 − α) × 100% credible

interval for function fj at point xl is computed from a frequentist per-

spective, f̂j(xl)± zα/2

√
b̃⊤
l Σ̂θj ,v̂b̃l.

As can be seen from Table 4.2, the LPS and LPSMAP methods per-

form well in the Poisson, Normal and Binomial scenarios as estimated

frequentist coverage probabilities are close to the nominal level at al-

most all selected covariate values. The gam() results also show a similar

performance across all scenarios. Comparing LPS and LPSMAP, we

observe that omitting the penalty uncertainty globally translates into a

slight decrease in percentage points for the estimated coverage probabil-

ity. Yet, the LPSMAP approach still exhibits close to nominal coverage

for all the functions. In terms of computational speed, the LPSMAP

approach is approximately four times faster than the LPS approach and

four times slower than gam() (≈ 0.05 seconds vs 0.26 seconds).
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In the Bernoulli setting where the information content for a given sam-

ple size is much smaller than under the other simulation scenarios, all

the considered methods exhibit effective frequentist coverages below the

nominal value as illustrated in Table 4.3 with n = 300. It corresponds

to situations where the estimates of the additive terms provided by

LPS(MAP) or gam() can be inaccurate. The pronounced undercov-

erage in this setting is explained by the poor information conveyed by

a binary random variable that translates into oversmoothing of the ad-

ditive functional components as highlighted in Figure 4.1. However, as

expected, increasing the sample size in the Bernoulli scenario yields fre-

quentist coverage probabilities close to their nominal value (cf. Table 4.3

with n = 2000) both for the LPS(MAP) and gam() methods.

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

x1

f 1(
x 1
)

−1.0 −0.5 0.0 0.5 1.0

−
3 

−
2 

−
1 

0
1

2
3

x2

f 2(
x 2
)

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

x3

f 3(
x 3
)

Figure 4.1: Estimation of smooth additive terms (gray curves) for S =

500 dataset replications of size n = 300 in the Bernoulli scenario with

LPS. The dashed line is the pointwise median of the gray curves and the

black curves are the target functions.

Table 4.4 reports the effective frequentist coverages of 90%, 95% and 99%

pointwise credible intervals averaged over 200 uniformly distributed val-

ues of the covariate on [−1, 1] and S = 500 dataset replications in the

Poisson, Normal and Binomial settings. Again, the LPS and LPSMAP

methodologies display estimated coverages close to their nominal value

in all scenarios. The gam() results show similar performance when cov-

erages are averaged over the covariate support. Note that gam() and

LPSMAP rely on a similar approach for selecting the optimal posterior

penalty value. Hence, the simulation results presented in this section

suggest that our penalty selection scheme is at least as efficient as what

is implemented in gam() for estimating the smooth components in the

additive part of the model.
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The simulation results confirm the attractiveness of the Laplace-P-spline

model for pointwise and set estimation of the regression parameters in

the linear part as well as of the smooth additive components. To enhance

the estimation accuracy of our approach in the case of extremely discrete

responses such as, for example, Bernoulli data, a possibility is to improve

the approximation to the conditional posterior p̃G(ξ|λ,D) by correcting

for location and skewness as suggested in Rue et al. (2009). Beyond such

extreme binary data configurations, the simple Laplace approximation

underlying LPS and LPSMAP suffices for precise inference. Further

simulations (not reported here) have been implemented to assess the

estimation performance of the additive smooth terms in small samples

(with n=150). Regardless whether the LPS(MAP) or MGCV method is

used, moderate to severe undercoverage is observed as the small sample

size does not convey enough information for a precise reconstruction of

the additive components. Even with a MCMC sampler to explore the

joint posterior p(ξ,v|D) (and without making Laplace approximations),

the reported coverages remain unsatisfying in a small sample setting.

To complete the simulation study, we compare the LPSMAP method-

ology against BayesX (Umlauf et al., 2015), a fully Bayesian contender

that can be used to fit structured additive regression models with MCMC.

In particular, we use the R2BayesX package and fit the GAM in the

Poisson scenario with the bayesx() routine using a chain of size 10, 000

and a burn-in of size 1, 000. Cubic B-spline bases are used to model

the smooth terms with a second order penalty. In Table 4.5, we report

the estimated 95% coverage of credible intervals for the smooth additive

components of the model on selected points in the interval [−1, 1] for

S = 200 replicates with sample size n = 300. The estimated frequentist

coverage probabilities are close to the 95% nominal level for both meth-

ods. There is however a notable difference in terms of computational cost

for model fitting. While the routines underlying BayesX take on average

6.53 seconds to fit the GAM for each dataset, the LPSMAP methodol-

ogy requires only 0.26 seconds (on average) for the fit. In other words,

LPSMAP is approximately 25 times faster than BayesX while maintain-

ing the same coverage performance for credible intervals on the smooth

terms. With more additive terms (q = 6), the computational gain is

maintained and we measured that LPSMAP is faster than BayesX by a

factor of (approximately) 7.
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f Method -0.95 -0.70 -0.50 -0.20 0.00 0.20 0.50 0.70 0.95

f1 LPSMAP 89.0∗ 96.0 94.5 97.0 91.0 97.0 93.5 96.5 91.5
f1 BAYESX 94.0 98.5 91.5 95.5 94.5 94.5 94.0 95.5 88.5∗

f2 LPSMAP 95.5 96.5 94.5 91.0 97.0 92.0 93.5 98.0 92.5
f2 BAYESX 93.0 94.0 95.5 93.5 96.5 92.5 91.0 94.0 84.5∗

f3 LPSMAP 92.5 96.0 92.5 94.5 96.0 95.0 95.5 97.0 92.5
f3 BAYESX 93.0 97.5 94.5 93.5 96.5 94.0 95.5 96.5 95.5

Table 4.5: Effective frequentist coverages of 95% pointwise credible in-
tervals for the functions f1, f2, f3 at selected domain points for Poisson
data over S = 200 replications of sample size n = 300 for LPSMAP and
BayesX. An asterisk points a statistically significant difference with the
nominal value.

When q increases, most of the computational budget underlying LPSMAP

to fit the GAM is dedicated to the Newton-Raphson algorithm to com-

pute the posterior mode v̂. Coding that optimization part in C++

(the language underlying BayesX) would further improve the speed of

LPSMAP.

4.3.3 Computational costs

To illustrate the computational behavior of LPS and LPSMAP against

sample size for fixed dimension q = 3, we consider an increasing sequence

of sample sizes from n = 200 to n = 3000 in steps of 200 and for each

considered sample size compute the average wall clock time (elapsed real

time) in seconds with the proc.time() function in R over 10 different

samples. In Figure 4.2 (a) the elapsed time to estimate the GAM model

with LPS and LPSMAP is plotted against sample size to depict the

involved computational resources. Both curves show a linear increase

with sample size. LPSMAP is faster than LPS as it does not require a

grid construction to explore the support of the marginal posterior of the

penalty parameters, but rather fix them at their posterior mode. Figure

4.2 (b) highlights the computational time of LPS(MAP) against sample

size n on a log scale.

4.3.4 Simulation study with more additive terms.

A large number q of smooth functions in the additive predictor implies

an increased computational burden.
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Figure 4.2: (a) Real elapsed time in seconds as a function of sample size

for LPS and LPSMAP. (b) Log of computational time (in seconds) of

LPS(MAP) against log sample size.

Algorithm 3 suggests to prefer independence sampling over a grid con-

struction to explore the marginal posterior of the penalty parameters

when q > 4, see Section 4.2.7 for details. To illustrate how the Laplace-

P-spline model performs with a larger number of smooth functions, we

simulate S = 500 datasets of size n = 300 and a Markov chain sample

of size 500 for each replicate with the following additive terms:

f1(x1) = 0.5(2x51 + 3x21 + cos(3πx1)− 1),

f2(x2) = 1.3x52 + sin(4x2) + 0.75x22 − 0.25,

f3(x3) = sin(4πx3),

f4(x4) = exp(−x34) sin(2πx24)− 0.1,

f5(x5) = 0.8x25(x
3
5 + 2 exp(−3x45 + log(2x5 + π)))− 0.65,

f6(x6) = 1.5
(
0.1 sin(2πx6) + 0.2 cos(2πx6) + 0.3 sin2(2πx6)

+0.4 cos3(2πx6) + 0.5 sin3(2πx6)
)
− 0.22.

There are three additional covariates specified as in Section 4.3.1 with

regression coefficients β0 = −1.20, β1 = 0.50, β2 = −0.40 and β3 = 0.70.

The covariates of the smooth functions are drawn independently from

the uniform distribution on the domain [−1, 1]. Each smooth function

is modeled using a linear combination of 15 cubic B-splines associated

to equidistant knots on [−1, 1] and a third order penalty to control

smoothness. Two scenarios are considered for the generating process

of the response, namely (1) a Gaussian model yi ∼ N (µi, σ
2 = 0.5)
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and (2) a Binomial model yi ∼ Bin(20, pi), with pi the success probabil-

ity and a logit link function. Table 4.6 shows the simulation results of

the Laplace-P-spline approach combined with MCMC. The estimation

results obtained with the gam() function from the mgcv package are

shown in parenthesis. Estimated biases shown in Table 4.6 are almost

similar for the two different approaches and nearly equal to zero in the

considered data scenarios. In addition, the reported coverage probabili-

ties are close to their corresponding nominal value and analogous results

appear for the ESE and RMSE with the LPS and mgcv algorithms.

Figure 4.3 illustrates the estimation results for the six additive smooth

terms with the proposed Laplace-P-spline methodology in the Binomial

case. For each graph, there are S = 500 gray curves representing the

estimates of the corresponding unknown smooth function (black) enter-

ing the additive predictor. The dashed curve represents the pointwise

median of the 500 estimated curves. For each smooth term, the observed

estimates are close to the target, even with highly oscillating functions

(e.g. f3 and f6). For function f6, small bumps arising near main curva-

tures are better captured by increasing the number of B-splines in the

basis.
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Figure 4.3: Estimation of smooth additive terms f1, . . . , f6 (gray curves)

for S = 500 dataset replications of size n = 300 in the Binomial scenario.

The dashed line is the pointwise median of the gray curves.
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With q = 6, our LPS methodology coupled with MCMC (LPS-MCMC)

requires (to build a chain of length 500) on average 4.70 seconds for a

dataset of size n = 300. In Table 4.7, we provide computation times of

the LPS-MCMC algorithm to estimate the GAM for different dimensions

q and sample sizes. As expected, the computation time increases with

q and n. Figure 4.4 gives an overview of the average computational

times required to estimate the GAM with the LPS and LPS-MCMC

algorithms for an increasing number of additive terms. When q ≤ 4

the LPS approach is faster, but in larger dimensions the LPS-MCMC

algorithm (with an independence sample of length 500) requires less

computational budget than the grid construction in LPS.

Average computation time (in seconds)

n = 300 n = 1000 n = 3000

q = 1 1.86 2.78 7.00
q = 2 2.10 3.46 11.60
q = 3 2.51 4.66 15.09
q = 4 3.04 6.53 21.04
q = 5 3.82 8.83 27.55
q = 6 4.70 11.46 36.08

Table 4.7: Average computation time (in seconds) of the LPS-MCMC
algorithm over S = 20 samples of size n ∈ {300, 1000, 3000} for different
dimensions q ∈ {1, 2, 3, 4, 5, 6}.
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Figure 4.4: Logarithm of the average computation time (in seconds)

of LPS (dahsed) and LPS-MCMC (solid) over S = 20 samples of size

n = 300 and dimensions q ∈ {1, 2, 3, 4, 5, 6}.
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4.4 Applications

4.4.1 Model for the number of doctor visits

We apply our Laplace-P-spline model in the context of a health-care

study on Medicaid eligibles. The data are from the 1986 Medicaid Con-

sumer Survey sponsored by the Health Care Financing Administration

in the USA. This Medicaid database has first been studied by Gurmu

(1997) in the framework of a semiparametric hurdle model and later

by Sapra (2013) as an econometric application of generalized additive

models using the mgcv package in R. Our analysis will focus on a sam-

ple of n = 485 adults who meet the requirement for eligibility in the

Aid to Families with Dependent Children (AFDC) program. The re-

sponse variable is the number of doctor visits (office/clinic and health

center) over a period of 120 days. The explanatory variables included

in the linear part of the GAM are Children (Total number of children in

the household), Race (0=other; 1=white) and Maritalstatus (0=other;

1=married). The variables modeled in the smooth nonlinear part are

taken to be Age, the household annual Income (in US dollars), a variable

measuring the ease of Access to health services with values in the interval

(0=low access; 100=high access) and the first principal component built

from three health-status variables (functional limitations, acute condi-

tions, chronic conditions) denoted by PC1 with larger positive numbers

meaning poorer health. Descriptive statistics of these variables are de-

tailed in Gurmu (1997). The GAM model with a Poisson conditional

distribution Poisson(µi) (i = 1, ..., n) for the number of doctor visits can

be written as follows:

g(µi) = β0 + β1Childreni + β2Racei + β3Maritalstatusi + f1(Agei) +

f2(Incomei) + f3(Accessi) + f4(PC1i), i = 1, . . . , n,

where g(·) is the log-link and the smooth functions fj are modeled using

a linear combination of 15 cubic B-splines penalized by a third order

penalty. The B-spline bases are defined over the domain [xj,min, xj,max],

where xj,min (xj,max) is the minimum (maximum) of the covariate values

on which fj is defined. Given the moderate number of additive terms

(q = 4), the posterior penalty space is explored via the grid strategy.
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Table 4.8 summarizes the estimation results for the parametric linear

part of the GAM. The results highlight a negative and significant rela-

tionship between the number of children in a household and the (mean)

number of doctor visits. The demographic variable Race has a non-

significant effect on the the mean response, while a negative and sig-

nificant relationship between Maritalstatus and the (mean) number of

doctor visits is observed. Figure 4.5 displays the estimated smooth func-

tions (solid curves) and the associated 95% approximate pointwise cred-

ible intervals (gray surfaces).

Parameters Estimates CI 90% sdpost

β1 (Children) -0.179 [-0.239; -0.122] 0.036
β2 (Race) -0.127 [-0.263; 0.005] 0.081
β3 (Maritalstatus) -0.234 [-0.431; -0.043] 0.118

Table 4.8: Estimation results for the parametric linear part of the GAM.
The second column is the parameter estimate, the third column gives
the associated 90% credible interval and the last column is the posterior
standard deviation.
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imate pointwise credible intervals (gray surface) for variables Age, In-

come, Access and PC1.
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As in Gurmu (1997), we observe a concave relationship between the

mean response and Age with a peak in the average number of visits

arising around Age=28. As most of the AFDC beneficiaries are women,

the concave pattern of Age may be explained by pregnancy-related vis-

its during fertile periods and less frequent visits in later periods of life.

The socio-economic variable Income exhibits no significant effect on the

mean number of doctor visits when Income is below $10, 000. Hence,

an increase in income for poor households with an annual income be-

low $10, 000 is (on average) not reflected by an increase in the number

of doctor visits. However, when the annual income goes above $10, 000,

individuals tend to care more about their health and the (average) num-

ber of medical visits increases. Furthermore, for the variable Access we

observe a strong oscillation of the mean response around a linear trend

in the domain [0, 70], suggesting that for low to moderate health ser-

vice availability, the mean number of doctor visits remains stable. With

regard to health-status variables gathered in PC1 the results are as ex-

pected. Indeed, we observe a clear upward trend, i.e. the average number

of medical visits increases with poorer health conditions.

4.4.2 Nutritional study

In a second application, we implement our methodology to analyze data

from a nutritional epidemiology study. More thoroughly, we are inter-

ested in modeling the relationship between the plasma beta-carotene

level and several explanatory variables related to individual factors and

dietary characteristics. Human cells are driven by an important dynamic

called the oxidation process, an energy delivery mechanism that is cru-

cial for a proper functioning at the cellular level. By-products of the

oxidation process are molecules known as free radicals. An imbalance

between free radicals and antioxidant defenses generates oxidative stress

which in turn triggers carcinogenesis. Beta-carotene is an antioxidant

acting as a free radical scavenger and has been shown to prevent various

cancer types and other diseases (Comstock et al., 1992; Rimm et al.,

1993 and Zhang et al., 1999).

The dataset provided by Stukel (2008) on plasma beta-carotene levels

has n = 314 observations on 14 variables. Factors influencing beta-

carotene plasma concentration levels have been studied by Nierenberg

et al. (1989), who found that beta-carotene level had a positive rela-
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tionship with dietary beta-carotene consumption and tends to be larger

for females, whereas a negative relation appeared with current smoker

status. The dataset was also analyzed by Liu et al. (2011) who develop

a variable selection procedure to identify the significant linear compo-

nents in a semiparametric additive partial linear model. The LPS model

is implemented on the data to study the relationship between the loga-

rithm of beta-carotene plasma level (in ng/ml) and various explanatory

variables retained as significant by the analysis in Liu et al. (2011).

The linear part of the additive model will include the BMI or Quetelet

index (weight/height2), the dietary beta-carotene consumption (Betadiet)

(in mg/day), Gender (0=Male; 1=Female), a binary indicator Smoking

status (0=Non smoker; 1=Current smoker) and the covariates Fiber

and Fat indicating the hectograms of fiber and fat respectively con-

sumed on a daily basis. The nonlinear part of the model will encompass

the variables Age (in years) and the log of Cholesterol consumption (in

mg/day). To summarize, the GAM model with an identity link is given

by yi = log(Betaplasmai) ∼ N (µi, s
2) where s2 = 0.559 is the empirical

variance of the response and the mean is modeled as:

µi = β0 + β1BMIi + β2Betadieti + β3Genderi + β4Smokingi + β5Fiber

+β6Fat+ f1(Agei) + f2(log(Cholesteroli)), i = 1, . . . , n.

In Table 4.9, we report the estimation results of the linear part. All

variables are significant, except Betadiet. There is a negative association

between BMI and the mean log plasma beta-carotene level meaning that

for a fixed height, individuals with lower weight tend to have (on average)

higher plasma beta-carotene concentrations.

As in Nierenberg et al. (1989), we find that females and non-smokers tend

to have a significantly larger beta-response level. A possible explanation

is that smoke actually deteriorates beta-carotene molecules through an

oxidation process. Finally, fiber consumption increases the mean plasma

beta-carotene level, with the consumption of vegetables on a daily basis

helping to maintain antioxidants at a high level, while a high-fat diet

tends to have a negative effect on the mean response.
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Parameters Estimates CI 90% sdpost

β1 (BMI ) -0.034 [-0.046; -0.022] 0.007
β2 (Betadiet) 0.047 [-0.009; 0.101] 0.033
β3 (Gender) 0.300 [ 0.076; 0.520] 0.135
β4 (Smoking) -0.301 [-0.515; -0.093] 0.128
β5 (Fiber) 2.396 [ 0.804; 3.938] 0.956
β6 (Fat) -0.245 [-0.493; -0.003] 0.149

Table 4.9: Estimation results for the parametric linear part of the GAM
for the nutritional study. The second column is the parameter estimate,
the third column gives the associated 90% credible interval and the last
column is the posterior standard deviation.

Figure 4.6 highlights the estimated smooth functions for Age and log

Cholesterol. For variable Age the shape of the estimated function is

similar to what is observed in Liu et al. (2011). There is a positive

association with the mean response when Age is smaller than 45 years

or greater than 65 years. On the other hand, the relation of the mean

response to the log-cholesterol level does not appear significant.
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Figure 4.6: Estimated smooth functions (solid curve) and 95% approx-

imate pointwise credible intervals (gray surface) for variables Age and

log(Cholesterol) of the nutritional study dataset.

4.5 Concluding remarks

In this chapter, we have put forward a new methodology for approximate

Bayesian estimation in generalized additive models (GAMs) by unifiy-

ing P-splines and Laplace approximations. The Laplace-P-spline model
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is endowed with closed form expressions for the gradient and Hessian

of the log posterior penalty vector. These analytical forms constitute

a valuable asset for a computationally efficient and precise exploration

strategy of the posterior penalty space that in turn leads to an accurate

approximation of the joint posterior latent vector (including the regres-

sion and spline parameters in the generalized additive model) even when

the number of smooth functions is large.

Extensive simulation studies show that the algorithms underlying LPS

and LPSMAP exhibit good estimation quality with respect to the con-

sidered performance metrics, as shown for instance by non-significant

biases or frequentist coverage probability of credible intervals apprecia-

bly close to their nominal value. Furthermore, our approximate Bayesian

approach has proved to be reliable in terms of estimation performance

with respect to smooth additive terms. Finally, even though the Laplace-

P-spline approach works from a complete Bayesian perspective, the com-

putational budget required for inference is relatively low as compared to

existing methods fully relying on MCMC algorithms.





CHAPTER 5
The blapsr package for
approximate Bayesian inference
with LPS
This chapter is based on: Gressani, O. and Lambert, P. (2020b). The blapsr package

for fast Bayesian inference in latent Gaussian models by combining Laplace approxi-

mations and P-splines. Version 0.5.1, published on CRAN.

5.1 Motivation

The blapsr package implements Bayesian-based approximate inference

in survival models and (generalized) additive models by coupling P-

splines for flexible modeling of functional structures and Laplace ap-

proximations to bypass Markov chain Monte Carlo (MCMC) methods

for fast derivation of posterior distributions. In particular, the routines

allow R users to fit the Cox model and promotion time cure model for

right censored event-times, as well as the additive partial linear model

and generalized additive model (GAM) with a response belonging to

the one-parameter exponential family. Penalized Bayesian B-splines are

used to model smooth functional components. In presence of multiple

smooth terms, the optimal penalty choice is driven by analytically avail-

able first and second derivatives of the posterior penalty vector. For each

of these models, the syntax is intuitive and various options are available

to evaluate, analyze and visualize posterior quantities of interest. The

aim of this chapter is to describe the main functionalities of the package.

141
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5.2 Introduction

Latent Gaussian models (LGMs) encompass a wide range of popular

statistical models that flexibly relate a set of covariates to a response,

allowing to apprehend nonlinear and complex relationships often en-

countered in practical applications. A LGM has a hierarchical structure

comprising three layers. The first two layers consist in a (potentially

high-dimensional) latent vector of model parameters ξ and another vec-

tor η of smaller dimension that contains the hyperparameters. Condi-

tionally on the hyperparameter vector, the latent vector is assigned a

Gaussian prior, while the prior distributional assumptions on the com-

ponents of η are not restricted to Gaussianity. At the bottom of the

hierarchy, we find the third layer in which the parameters of the prior

distributions of η are gathered.

The blapsr package focuses on four model classes that belong to LGMs,

namely Cox proportional hazards models (Cox, 1972), promotion time

cure models (Yakovlev et al., 1996; Tsodikov, 1998; Chen et al., 1999),

additive partial linear models (Opsomer and Ruppert, 1999; Fan and

Li, 2003) and generalized additive models (Hastie and Tibshirani, 1986,

1987). P-splines (Eilers and Marx, 1996) serve as the main smoother

in the LPS approach as they enjoy the following three elegant prop-

erties: (1) the penalty matrix is sparse and easily constructed from

simple difference matrices, (2) P-splines are categorized as low-rank (or

reduced-knot) smoothers, such that the number of knots used to con-

struct the spline basis is usually considerably smaller than the sample

size, keeping the computational budget minimal and (3) P-splines can

be straightforwardly adapted to a Bayesian setting by translating the

roughness penalty in a multivariate Gaussian distribution for the spline

amplitudes (Lang and Brezger, 2004).

The Comprehensive R Archive Network (https://cran.r-project.

org/) hosts an incredibly large number of packages dedicated to statisti-

cal inference in structured additive regression models. Among those, the

mgcv package (Wood, 2017) is probably the most appreciated toolkit

to fit generalized additive models, as it provides a rich collection of

smoothers to choose from, with stable and fast routines. Also, the R-

INLA package that can be found on the website (http://www.r-inla.

org/) is based on the Integrated Nested Laplace Approximations tech-

https://cran.r-project.org/
https://cran.r-project.org/
http://www.r-inla.org/
http://www.r-inla.org/
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nique pioneered by Rue et al. (2009) which has proved to work well in a

variety of applications and has therefore been largely recognized in the

statistical community. For the analysis of survival data, established rou-

tines to fit Cox models are provided in the survival package (Therneau,

2020). Few R functions are dedicated to cure models; among others, the

smcure package Cai et al. (2012) can be used for inference in semipara-

metric mixture cure models and the more recent package miCoPTCM

(Bertrand et al., 2017) implements functionalities to fit promotion time

cure models taking into account mis-measured covariates. The blapsr

project can be seen as an extension to the aforementioned packages with

a particular emphasis on the combination of Laplace approximations and

penalized regression splines serving as the main mechanism for approx-

imate Bayesian inference. The key advantage of our LPS approach lies

in its analytical tractability. Focusing on a single type of smoother (P-

splines) gives us the opportunity to write down the full likelihood of the

model and hence obtain full-fledged analytical expressions for the con-

ditional posterior of the latent vector and the posterior penalty vector.

This in turn, permits exact derivation of the gradient and Hessian of the

posterior penalty vector, which offers a non-negligible computational ad-

vantage to explore the posterior penalty space with optimization meth-

ods and grid-based (or sampling) approaches. Furthermore, even for

complex functions of latent variables, it is possible to obtain accurate

point and set estimates. Finally, the LPS methodology has shown to

have excellent statistical properties and is relatively fast despite being a

fully Bayesian approach.

This chapter illustrates the use of the blapsr package throughR code on

simulated and real data. The purpose is not to provide a stand-alone text

of the package, nor is it to give a long-winded exposition of all the options

available. Rather, the emphasis is placed on a first “hands-on” experi-

ence with the available routines and how they can be used to extrapolate

important information from the data. The reader interested in a deeper

understanding of the routines can consult the package documentation

in which all functionalities are thoroughly documented as well as the

website dedicated to the project https://www.blapsr-project.org/

that has many examples and explanations. The rest of this chapter is

organized as follows. In Section 5.3, a compact formulation of latent

Gaussian models is presented with a brief discussion on the challenges

https://www.blapsr-project.org/


144 THE BLAPSR PACKAGE

to be surmounted for model fitting. Section 5.4 is devoted to the core

functions for inference in the Cox model and the promotion time cure

model. The latter routines are illustrated on a simulated example and

on colon cancer data. Section 5.5 presents the available functions to fit

(generalized) additive models. Finally, the chapter closes with a discus-

sion in Section 5.6.

5.3 Laplace-P-splines in latent Gaussian models

The latent vector of the models involved in the blapsr package is of

the form ξ = (β⊤,θ⊤)⊤, where β is a vector of regression parame-

ters including (or not) an intercept and θ is a vector of B-spline coef-

ficients. In additive models, this vector is often high-dimensional. For

instance, in a GAM with, say 5 smooth terms, each modeled with a

basis containg 30 B-splines and 3 covariates in the linear part, there are

dim(ξ) = (5× 29) + 3+ 1 = 149 latent variables. The number 29 is due

to the elimination of the last column of the B-spline matrix because of

the identifiability constraint. In the promotion time cure model, an ad-

ditional vector γ is added to the latent vector to model the covariates in

the so-called “short-term survival” part (Lambert and Bremhorst, 2019).

Model hyperparameters are organized in a vector η = (λT , δT )T , where

λ is a vector of positive penalty parameters and δ further hyperparam-

eters present in the robust Gamma prior specification for the roughness

penalty parameters following Jullion and Lambert (2007). A Gaussian

prior is imposed on the vector of regression and spline parameters condi-

tional on the hyperparameter vector, i.e. ξ|η ∼ Ndim(ξ)(0, Q
−1
ξ ), where

Qξ is a block diagonal (sparse) precision matrix. The nested structure

underlying the LPS approach can be written in terms of the conditional

posterior of ξ and the marginal posterior of the hyperparameter vector:

p(ξ|η,D) ∝ L(ξ;D) p(ξ|η), (5.1)

p̃(η|D) ∝ L(ξ;D) p(ξ|η) p(η)
p̃G(ξ|η,D)

∣∣∣∣
ξ=ξ̂λ

, (5.2)

where D = ∪n
i=1Di is the set of observables for a sample of size n, p̃G(·)

denotes a Gaussian approximation to the conditional latent vector pos-

terior with posterior mode ξ̂λ, where the subscript explicitly indicates
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that the mode depends on the penalty vector λ. Note that for an ad-

ditive partial linear model with normal errors, p(ξ|η,D) is Gaussian, so

that the expression for the posterior in (5.2) is exact and not an approx-

imation. The Gaussian approximation to the conditional posterior of ξ

is obtained through Newton-based methods. To avoid numerical pitfalls

in Newton-Raphson approaches, it is important to guarantee that the

negative Hessian matrix of the concerned posterior distribution to be

optimized is positive definite at each step of the algorithm to ensure an

ascent direction (for maximization). Even if we proceed in an ascent

direction, it does not necessarily mean that an ascent will be reached in

a given step. Therefore, a step-halving strategy is highly recommended

as a warranty to increase the objective function at each step.

After appropriate integration of the posterior in (5.2), one obtains the

marginal (approximate) posterior distribution p̃(v|D), where v is the

vector of log penalty parameters. Using a grid-based method (or a sam-

pling scheme), a collection of quadrature points {v(m)} is used to ap-

proximate the joint posterior distribution of ξ:

p(ξ|D) =

∫

R++

p(ξ|v,D) p(v|D) dv

≈
∑

p̃G(ξ|v(m),D) p̃(v(m)|D) ∆v. (5.3)

Posterior estimates and credible intervals for ξ (or functions of latent

variables) can then be constructed from (5.3).

For a given model, the effective dimension (ED) also known as the “ef-

fective degrees of freedom” (Ye, 1998; Eilers et al., 2015; Wood et al.,

2016; Eilers, 2018) can be computed and serves as a measure of model

complexity. Let I = −∇2
ξℓ(ξ;D)|

ξ=ξ̂
be the negative Hessian of the log-

likelihood ℓ(·) evaluated at the posterior estimate of the vector ξ. The

ED of the whole model is obtained by summing the dim(ξ) elements on

the main diagonal of the matrix H = (I +Qξ)
−1I. In (generalized) ad-

ditive models, the ED of a given smooth term is computed by summing

up the appropriate elements of diag(H) that correspond to the B-spline

coefficients used to approximate the smooth. We refer to Chapters 3

and 4 for theoretical details on the LPS methodology in (generalized)

additive models.
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5.4 The blapsr package for survival analysis

The blapsr package can be installed and loaded by typing:

R> install.packages("blapsr")

R> library("blapsr")

The routines presented in this section are summarized in Table 5.1 and

can be used for the analysis of right censored survival data.

Function name Description

simsurvdata() Simulation of right censored survival data

coxlps() Fit a Cox proportional hazards model

plot.coxlps() Plot baseline hazard and survival curves

curelps() Fit a promotion time cure model

curelps.extract() Computation of posterior survival quantities

plot.curelps() Plot of posterior survival quantities

Table 5.1: Routines for survival analysis

5.4.1 The coxlps() function to fit Cox models

The coxlps() function is illustrated on simulated data obtained with

the simsurvdata() routine which generates right censored time-to-event

data with latent event times drawn from a Weibull distribution parame-

terized by a shape a > 0 and scale b > 0 parameter. Latent event times

are generated following Bender et al. (2005) and censoring times are

drawn from an exponential distribution. The user can specify a sample

size, a vector of regression coefficients and a target censoring percentage.

R> require("survival")

R> set.seed(3)

R> simul <- simsurvdata(a = 3.5, b = 4, n = 250,

+ betas = c(0.7, -0.8, 0.4), censperc = 15)

R> simul

Sample size: 250

Censoring: Exponential

Number of events: 210

Censoring percentage: 16%
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Weibull mean: 3.60

Weibull variance: 1.30

R> simdat <- simul$survdata

R> head(simdat, 5)

time delta x1 x2 x3

1 6.166957 1 -0.96193342 -0.5350631 -2.13984191

2 2.046183 0 -0.29252572 1.3681062 -1.26347924

3 4.993415 1 0.25878822 0.1418443 0.08330797

4 1.918469 0 -1.15213189 -0.7828150 0.18832513

5 4.509665 1 0.19578283 1.8815187 0.18981419

R> plot(simul)
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Figure 5.1: Overview of the first 25 observed follow-up times.

The coxlps() routine models the (log) baseline hazard as a linear com-

bination of cubic B-splines computed with the routine cubicbs() in

the interval [0, tu], where tu is the upper bound of the follow-up (here

tu = 11.834). The formula syntax is the same as for the coxph() formula

of the survival package. Fitting the Cox model with 25 cubic B-splines

and a second order penalty (the default) yields:
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R> fit <- coxlps(Surv(time, delta) ~ x1 + x2 + x3,

+ data = simdat, K = 25)

R> fit

Formula:

Surv(time, delta) ~ x1 + x2 + x3

Object class: "coxlps"

Number of B-splines in basis: 25

Number of parametric coeffs.: 3

Latent vector dimension : 28

Penalty order : 2

Sample size : 250

Number of events: : 210

Effective dimension (ED) : 7.80

Estimated model coefficients:

coef exp(coef) sd.post z

x1 0.8210 2.2729 0.0809 10.1507

x2 -0.9059 0.4042 0.0870 -10.4171

x3 0.3106 1.3643 0.0804 3.8659

exp(coef) exp(-coef) lower.95 upper.95

x1 2.2729 0.4400 1.9365 2.6607

x2 0.4042 2.4741 0.3403 0.4788

x3 1.3643 0.7330 1.1636 1.5955

---

AIC.p = 377.5761 AIC.ED = 387.1704

BIC.p = 387.6174 BIC.ED = 413.2684

The first few lines of output contains information on the structure of

the vector ξ which can be decomposed into B-spline coefficients and

parametric terms associated to the covariates of the model. The penalty

order, sample size, number of events and effective model dimension are

also summarized. The table of estimated model coefficients gives a de-

tailed account of posterior pointwise and set estimates of the regression

coefficients. The last lines of output provide the Akaike information cri-

terion (Akaike, 1973) and the Bayesian information criterion or Schwarz
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criterion (Schwarz et al., 1978) that are useful for model selection. The

AIC and BIC are given by AIC.p = −2ℓ(ξ̂,D)+2p, where p is the num-

ber of regression coefficients; BIC.p = −2ℓ(ξ̂,D)+ p log(ne), where ne is

the number of non-censored event times. Formulas to compute AIC.ED

and BIC.ED are analogous and use the ED instead of p.

The plot.coxlps() routine allows the user to plot the estimated base-

line hazard and survival functions with an associated credible interval at

level (1−α)×100%. It is also possible to overlay the estimated Kaplan-

Meier curve by setting the overlay.km option to TRUE. The code below

plots the smooth estimated baseline survival function with a 90% ap-

proximate pointwise credible interval and makes a comparison with the

true baseline survival used to simulate the data as shown in Figure 5.2.

R> domt <- seq(0, 7, length = 200)

R> plot(fit, h0 = FALSE, cred.int = 0.90, overlay.km = F,

+ plot.cred = T, xlim = c(0, 7), show.legend = F)

R> lines(domt, simul$S0(domt), type = "l", col = "red",

+ lty = 2, lwd = 2)

R> legend("topright", col = c("black", "gray", "red"),

+ lty = c(1, 1, 2), c("Bayesian LPS", "90% CI", "Target"),

+ cex = 0.8, bty = "n")

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S 0
 (t

) 

Bayesian LPS 

90% CI 

Target

^

Figure 5.2: Estimated baseline survival function (black curve). The gray

surface corresponds to a 90% credible interval and the dashed curve is

the target baseline survival.
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5.4.2 The promotion time cure model with curelps()

A phenomenon often encountered in the analysis of time-to-event data

is the existence of a fraction of long-term survivors that will never expe-

rience the monitored event irrespective of the duration of the follow-up.

The promotion time cure model is an extension of the Cox model that

endorses the existence of an unidentified proportion of cured subjects.

Although the model was initially motivated by a biological context in-

volving cancer cells (Yakovlev et al., 1996; Tsodikov, 1998; Chen et al.,

1999) it can be extrapolated to a more generic framework in which the

model skeleton is divided in two parts. The first part involves covariates

influencing the cure probability or “long-term survival” and the second

part incorporates covariates affecting the population hazard dynamics

or “short-term survival” (Bremhorst and Lambert, 2016; Gressani and

Lambert, 2018; Lambert and Bremhorst, 2019). The curelps() func-

tion follows this semantic in the formula argument through the terms

st() and lt(), offering the user an intuitive and simple syntax. For in-

stance, Surv(time, event) ∼ lt(x1 + x2) + st(x1 + x3) is a for-

mula specifying a promotion time cure model with covariate x1 affect-

ing survival jointly in the long- and short term, while x2 and x3 only

affect long-term and short-term survival respectively. Bayesian Laplace-

P-splines have good statistical properties when applied to such survival

models with a cured fraction (cf. Chapter 2) and drastically outperform

MCMC methods from a computational perspective.

The curelps() routine is illustrated on colon cancer data available in

the survival package. The study goes back to Laurie et al. (1989) in

which eligible patients were assigned either to observation alone (no ad-

juvant therapy), to treatment with Levamisole or to a combination of

Levamisole and Fluorouracil (5-FU). The data has further been investi-

gated in Moertel et al. (1990) and Moertel et al. (1995) with encouraging

results for the treatment Levasimole plus 5-FU to reduce cancer recur-

rence. More recently, Lambert and Bremhorst (2019) fitted a promotion

time cure model to these data by combining P-splines for flexible esti-

mation of the (log) baseline hazard and a Metropolis-within-Gibbs algo-

rithm to sample the joint posterior of the model. With the few R lines

below, one obtains the Kaplan-Meier estimates of the survival curves for

the recurrence times (in years) for each treatment.
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R> library(survival)

R> data("colon")

R> colondat <- subset(colon, (etype==1) & (!is.na(nodes)) &

+ (!is.na(differ)))

R> colondat$time <- colondat$time / 365

R> plot(survfit(Surv(time, status) ~ rx, data = colondat),

+ col = c("black", "red", "blue"), lty = c(1,2,3),

+ lwd = c(2,2,2), mark.time = T, mark = "x",

+ xlab ="Time t (in years)", ylab = expression(S[p](t)))

R> legend("topright", c("Obs", "Lev", "Lev+5FU"),

+ lty = c(1,2,3), lwd = + c(2,2,2), bty = "n",

+ col = c("black", "red", "blue"), cex = 0.8)

0 2 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4

Time t (in years)

S
p(

t)

xxx

x x

x x
x x x

xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxx xxx x x

xx

x

x

x

x
x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx x x xx

xx

xxx

x x
x x x x x xxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x x x xx

Obs

Lev

Lev+5FU

Figure 5.3: Kaplan-Meier curves for the time to recurrence in each treat-

ment group.

The treatment (rx), number of lymph nodes (nodes) and cancer extent

(extent) are the three (factor) covariates entering the long-term sur-

vival, while the short-term survival part includes the number of lymph

nodes and the tumour differentiation (differ). Before fitting the model,

we proceed to a recategorization of covariates (cf. Lambert and Bremhorst,

2019, Section 4):

R> levels(colondat$rx) <- c("Obs", "Obs", "Lev+5FU")

R> colondat$nodes[colondat$nodes <= 2] <- 1

R> colondat$nodes[colondat$nodes >= 3 &
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+ colondat$nodes <= 5] <- 2

R> colondat$nodes[colondat$nodes >= 6] <- 3

R> colondat$nodes <- as.factor(colondat$nodes)

R> levels(colondat$nodes) <- c("<=2", "[3-5]", ">=6")

R> colondat$extent <- as.factor(colondat$extent)

R> levels(colondat$extent) <- c("Submucosa/muscle",

+ "Submucosa/muscle", "Serosa", "Contig.structures")

R> colondat$extent <- factor(colondat$extent,

+ levels(colondat$extent)[c(2,1,3)])

R> colondat$differ <- as.factor(colondat$differ)

R> levels(colondat$differ) <- c("Well/moderate",

+ "Well/moderate", "Poor")

The promotion time cure model described in Chapter 2 is fitted using

the following syntax with 20 B-splines and a third-order penalty:

R> fit <- curelps(Surv(time,status) ~ lt(rx + nodes + extent)

+ st(nodes + differ), data = colondat, K = 20, penorder = 3)

R> fit

Formula:

Surv(time, status) ~ lt(rx + nodes + extent)

+ st(nodes + differ)

Object class: "curelps"

Number of B-splines in basis: 20

Number of parametric coeffs.: 9

Latent vector dimension: 29

Penalty order: 3

Sample size: 888

Number of events: 446

Effective model dimension: 11.66

Coefficients influencing the cure probability

(long-term survival):

coef sd.post z lower.95 upper.95

(Intercept) -0.3306 0.0541 -6.1149 -0.4376 -0.2253

Lev+5FU -0.5026 0.1091 -4.6072 -0.7186 -0.2901



5.4. THE BLAPSR PACKAGE FOR SURVIVAL ANALYSIS 153

[3-5] 0.4348 0.1217 3.5742 0.1939 0.6718

>=6 0.8422 0.1281 6.5749 0.5886 1.0917

Submucosa/muscle -0.5631 0.1713 -3.2865 -0.9023 -0.2293

Contig.structures 0.4811 0.2108 2.2824 0.0637 0.8916

Coefficients affecting the population hazard dynamics

(short-term survival):

coef exp(coef) sd.post z

[3-5] 0.2849 1.3297 0.1539 1.8508

>=6 0.2890 1.3351 0.1626 1.7771

Poor 0.6979 2.0096 0.1444 4.8323

---

exp(coef) exp(-coef) lower.95 upper.95

[3-5] 1.3297 0.7521 0.9803 1.7946

>=6 1.3351 0.7490 0.9675 1.8328

Poor 2.0096 0.4976 1.5098 2.6626

---

AIC.p = 2415.9369 AIC.ED = 2421.2658

BIC.p = 2452.8398 BIC.ED = 2469.0936

The curelps.extract() routine is used to compute the cure prediction

for a given profile of covariates, i.e. the probability that a subject is cured

given that (s)he has survived until a certain time point t. We compare

the difference in cure probability at times t = (0.5, 1, 2) between groups

receiving Levamisole or no treatment versus Levamisole plus 5-FU for

subjects having [3-5] lymph nodes with extent of local spread in Serosa

and a poor differentiation of tumour.

R> profileConTLEV <- c(0, 1, 0, 0, 0, 1, 0, 1)

R> profileLEV5FU <- c(1, 1, 0, 0, 0, 1, 0, 1)

R> curelps.extract(fit, time = c(0.5, 1 ,2),

+ curvetype = "probacure", covar.profile = profileConTLEV)

Estimated cure prediction at specified time points (*):

Time Cure.prob(**) Cure.low Cure.up

[1,] 0.5000 0.5353 0.4008 0.6523

[2,] 1.0000 0.7029 0.5333 0.8206

[3,] 2.0000 0.9013 0.7435 0.9642
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---

* Bounds correspond to a 95.00% credible interval.

** Cure prediction for covariate profile: 0, 1, 0, 0, 0, 1,

0, 1 .

R> curelps.extract(fit, time = c(0.5, 1 ,2),

+ curvetype = "probacure", covar.profile = profileLEV5FU)

Estimated cure prediction at specified time points (*):

Time Cure.prob(**) Cure.low Cure.up

[1,] 0.5000 0.6852 0.5553 0.7842

[2,] 1.0000 0.8079 0.6725 0.8917

[3,] 2.0000 0.9391 0.8321 0.9787

---

* Bounds correspond to a 95.00% credible interval.

** Cure prediction for covariate profile: 1, 1, 0, 0, 0, 1,

0, 1 .

The output shows the estimated cure prediction for time values sum-

marized in the first column along with 95% approximate quantile-based

credible intervals. The plot.curelps() function is used to plot smooth

estimates of the cure prediction as shown in Figure 5.4.

R> par(mfrow = c(1, 2))

R> plot(fit, curvetype = "probacure",

+ covar.profile = profileConTLEV,

plot.cred = T, ylim = c(0, 1), xlim = c(0, 4),

main = "ConTLEV", cex.main = 0.8, show.legend = F)

R> legend("bottomright", c("Cure proba.", "95% CI"),

+ lty = c(1, 1), col = c("black", "gray75"), bty = "n")

R> plot(fit, curvetype = "probacure",

+ covar.profile = profileLEV5FU,

plot.cred = T, ylim = c(0, 1), xlim = c(0, 4),

main = "LEV + 5FU", cex.main = 0.8, show.legend = F)

R> legend("bottomright", c("Cure proba.", "95% CI"),

+ lty = c(1, 1), col = c("black", "gray75"), bty = "n")
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Figure 5.4: Estimated cure prediction for groups receiving no adjuvant

therapy or Levamisole alone (left) and Levamisole plus 5-FU (right). The

gray surface represents approximate 95% pointwise credible intervals.

5.5 Routines for (generalized) additive models

The aim of this section is to present the routines of the blapsr package

dedicated to the analysis of additive models and generalized additive

models. Additive models play an important role in the statistical litera-

ture as they provide well-tailored regression tools to capture nonlinear-

ities in the data. They also allow to deviate from the (often restrictive)

assumption of a response being governed by Gaussianity, by consider-

ing distributions belonging to a more general class. The functions for

additive modeling using the LPS approach are summarized in Table 5.2.

Function name Description

amlps() Additive partial linear modeling with LPS

gamlps() Generalized additive models with LPS

plot.amlps() Plot smooth terms for additive models

simgamdata() Data simulation for GAMs

plot.gamlps() Plot smooth terms for GAMs

Table 5.2: Routines for (generalized) additive modeling

5.5.1 Additive partial linear models with normal errors

The ozone data is a benchmark dataset in the GAM literature and has

extensively been used to illustrate nonparametric regression techniques.

It has originally been analyzed by Breiman and Friedman (1985) to study
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the relationship between ozone concentration in the atmosphere and a

set of meteorological covariates measured in the Los Angeles area. The

amlps() routine is illustrated on the ozone data obtained from the ibr

package using the log of ozone concentration as a response with n = 330

observations and eight covariates summarized in Table 5.3.

Variable name Description

vh 500 millibar pressure height (m)

wind Wind speed (mph)

humidity Humidity (in %)

temp Temperature (◦F) measured at Sandburg, CA

ibh Inversion base height (feet)

dpg Pressure gradient (mmHg)

ibt Inversion base temperature (◦F)

vis Visibility (miles)

Table 5.3: Meteorological covariates for the ozone data

The formula syntax of amlps() closely mimics the syntax used in the

gam() function of the mgcv package (Wood, 2017) to specify smooth

terms. For instance, the formula y ∼ z1 + z2 + sm(x1) + sm(x2)

specifies an additive partial linear model with continuous or categorical

covariates z1 and z2 in the linear part and two smooth terms depending

on the continuous covariates x1 and x2 respectively. The following code

illustrates the use of the amlps() routine to fit the ozone data with all

covariates in the smooth part of the model, 25 cubic B-splines in the

basis and a second order penalty:

R> library("ibr")

R> data("ozone")

R> ozonedat <- ozone

R> colnames(ozonedat) <- c("ozone", "vh", "wind", "humidity",

+ "temp", "ibh", "dpg", "ibt", "vis")

R> fit <- amlps(log(ozone) ~ sm(vh) + sm(wind) +

+ sm(humidity) + sm(temp) + sm(ibh) + sm(dpg) + sm(ibt) +

+ sm(vis), data = ozonedat, K = 25, penorder = 2)

R> fit
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Formula:

log(ozone) ~ sm(vh) + sm(wind) + sm(humidity) + sm(temp) +

sm(ibh) + sm(dpg) + sm(ibt) + sm(vis)

Sample size: 330

Number of B-splines in basis: 25

Number of smooth terms: 8

Penalty order: 2

Latent vector dimension: 193

Model degrees of freedom: 23.49

Linear coefficients:

Estimate sd.post z-score lower .95 upper .95

(Intercept) 1.9447 0.0686 92.0280 1.9033 1.9862

---

Effective degrees of freedom of smooth terms:

edf lower.95 upper.95 Tr p-value

sm(vh) 1.6900 1.0000 9.6173 1.5426 0.4900151

sm(wind) 2.3603 1.0783 4.5525 4.0142 0.2582988

sm(humidity) 2.3467 1.2131 4.2485 5.8127 0.1175616

sm(temp) 3.0910 1.0477 5.8101 29.2759 6.125e-06 ***

sm(ibh) 3.2234 1.2246 5.5781 15.6525 0.0033446 **

sm(dpg) 4.0310 2.1824 6.4819 22.9305 0.0003743 ***

sm(ibt) 2.2326 1.0000 12.7350 2.3126 0.4858104

sm(vis) 3.5165 1.0739 6.9757 17.0811 0.0025989 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

---

Posterior interval corresponds to a 95% HPD interval

Estimated standard deviation of error: 0.3839

Adjusted R-squared: 0.7657

The output starts with a couple of lines summarizing the model specified

by the user, the number of latent variables to be estimated and the

degrees of freedom of the model as a proxy for model complexity. Next,

a table containing point and set estimates of the coefficients in the linear
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part of the model are shown (here only the intercept). Finally, the

last table displays results on the estimated effective degrees of freedom

(edf) of the smooth terms together with a 95% highest posterior density

(HPD) interval. A test statistic Tr (Wood, 2013) and its associated p-

value is also provided to test the presence of a significant effect of the

corresponding covariate.

The theoretical effective degrees of freedom of a smooth term varies in

the range [r − 1,min(n,K − 1)], where r denotes the penalty order and

K the number of B-splines in the basis. Note that one degree of freedom

is lost due to the identifiability constraint inherent in additive models.

Values in the edf column measure the complexity of the fitted smooth

functions. An estimated edf value for a smooth term close to unity means

that the true function to be estimated is close to linearity. The 95% HPD

credible interval is based on a sample of effective degrees of freedom

computed from a random sample of log roughness penalty parameters

generated from a Gaussian approximation to the (log) posterior penalty

vector around its posterior mode, see Section 3.5.1. Despite being a

crude approximation, it gives us an idea of the uncertainty associated to

the estimation of the edf. In the above results, we see that the smallest

edf values arise for the variables vh, wind, humidity and ibt.

The statistic Tr is a Wald-type statistic used to test the null hypothesis

H0 : fj(x) = 0 ∀x ∈ Xj versus H0 : fj(x) ̸= 0 for some x ∈ Xj , where

Xj denotes the range of fj . Non-rejection of H0 suggests to drop the

jth covariate from the model. Let B̃j be the B-spline basis such that

f̂j = B̃j θ̂j . The covariance of f̂j is the n × n matrix V
f̂j

= B̃jΣ̂θj
B̃T

j ,

where Σ̂θj
is the estimated variance-covariance matrix of the B-spline

coefficients associated to the jth smooth. A well-behaved Wald statistic

proposed in Wood (2013) is Tr = f̂Tj V
r−
f̂j
f̂j , where r is the estimated

effective degrees of freedom of the concerned smooth term and V r−
f̂j

is a

rank-r Moore-Penrose inverse of V
f̂j
. The p-values are computed using

that under the null hypothesis, Tr is approximately Gamma distributed

G(r/2, 1/2), so that E(Tr) = r and V (Tr) = 2r. According to the

computed p-values, we decide to remove vh, wind, humidity and ibt

from the smooth part of the model. The plot.amlps() routine is used

to plot the smooth terms using the following commands:
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R> par(mfrow = c(2,3))

R> for(j in 1:8) plot(fit, smoo.index = j, ylim = c(-1, 1))

The plot is shown in Figure 5.5. The vertical ticks on the abscissa corre-

spond to the observed covariate values. On the vertical axis, the variable

names are given together with their associated degrees of freedom.
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Figure 5.5: Estimated smooth terms for the ozone dataset with approx-

imate 95% pointwise credible intervals. Vertical ticks on the abscissa

correspond to observed covariate values.
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We fit a second model (not reported here) with the nonsignificant smooth

variables entering as linear components. As none of the linear compo-

nents were significant, we decide to fit a simplified model with only two

covariates:

R> fit3 <- amlps(log(ozone) ~ temp + sm(dpg),

+ data = ozonedat, penorder = 2)

R> fit3

Formula:

log(ozone) ~ temp + sm(dpg)

Sample size: 330

Number of B-splines in basis: 30

Number of smooth terms: 1

Penalty order: 2

Latent vector dimension: 31

Model degrees of freedom: 6.74

Linear coefficients:

Estimate sd.post z-score lower .95 upper .95

(Intercept) -0.2193 0.0376 -2.0246 -0.4316 -0.0070

temp 0.0374 0.0017 21.8821 0.0341 0.0407

---

Effective degrees of freedom of smooth terms:

edf lower.95 upper.95 Tr p-value

sm(dpg) 4.7385 2.8194 6.9970 54.4669 5.621e-10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

‘ ’ 1

---

Posterior interval corresponds to a 95% HPD interval

Estimated standard deviation of error: 0.4358

Adjusted R-squared: 0.6698

The above results suggest that temp and dpg are significant variables in

explaining the ozone concentration level. Similar conclusions are found

in Donnell et al. (1994) and Gu et al. (2010).
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5.5.2 Generalized additive models: a simulated example

In many practical applications the assumption of Gaussian errors is

rather restrictive. GAMs provide a useful extension of generalized linear

models (Nelder and Wedderburn, 1972) in the sense that covariates are

flexibly related to the mean of a conditional distribution in the expo-

nential family. The gamlps() routine can be used to fit GAMs with

the LPS methodology for a response belonging to the one-parameter

exponential family (cf. Chapter 4). The input components are the

same as for amlps() with an additional option to specify the family

which can be either Gaussian, Poisson, Bernoulli or Binomial. As an

illustration, consider the following scenario with a Binomial response

yi ∼ Bin(15, pi), i = 1, . . . , 450 and success probability pi, which can be

simulated using the simgamdata() routine:

R> set.seed(8)

R> sim <- simgamdata(n = 450, dist = "binomial", scale = 0.4)

Setting : 1

Sample size n: 450

Distribution : binomial

-------------------------

Covariates generated:

z1 ~ Bern(0.5)

z2 ~ N(0,1)

xj ~ U(-1,1), j = 1,2,3

True linear coefficients: -1.45 0.25 -0.9

R> simdat <- sim$data

R> head(simdat, 5)

y z1 z2 x1 x2 x3

1 13 0 0.19505235 -0.5995711 -0.9276131 -0.0008430188

2 3 0 -0.08121796 0.3704372 -0.1711766 -0.0236410098

3 6 0 1.40425504 0.8337515 -0.3656346 -0.6208308893

4 6 1 0.66141818 -0.4312011 -0.0916422 -0.1154869045

5 8 1 0.52990335 -0.7906997 -0.6233590 0.7552377293

The dataset has a binary covariate z1 ∼ Bern(0.5) and a continuous

covariate z2 ∼ N (0, 1), both of which will enter the linear part of the
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model. The remaining covariates xj ∼ U(−1, 1), j = 1, 2, 3 have the

following associated functions f1(x1) = 0.5(2x1−1)2, f2(x2) = cos(2πx2)

and f3(x3) = 4 sin(2πx3)/(2 − sin(2πx3)). The code below fits a GAM

with gamlps() on the simulated data and plots the fitted smooth terms

with plot.gamlps() along with the true target functions.

R> fit <- gamlps(y ~ z1 + z2 + sm(x1) + sm(x2) + sm(x3),

+ data = simdat, family = "binomial", nbinom = 15,

+ penorder = 2)

R> fit

Formula:

y ~ z1 + z2 + sm(x1) + sm(x2) + sm(x3)

Family: binomial

Link function: logit

Sample size: 450

Number of B-splines in basis: 30

Number of smooth terms: 3

Penalty order: 2

Latent vector dimension: 90

Model degrees of freedom: 33.93

Linear coefficients:

Estimate sd.post z-score lower.95 upper.95

(Intercept) 0.3601 0.0393 9.1647 0.2825 0.4358

z1 0.1929 0.0753 2.5628 0.0443 0.3380

z2 -0.8878 0.0409 -21.6808 -0.9686 -0.8088

---

Effective degrees of freedom of smooth terms:

edf lower.95 upper.95 Tr p-value

sm(x1) 4.9539 3.8587 6.6960 790.6542 < 2.2e-16 ***

sm(x2) 9.4361 7.9371 11.5889 306.5613 < 2.2e-16 ***

sm(x3) 16.5439 15.0965 18.5881 1433.4472 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

‘ ’ 1,

---

Posterior interval corresponds to a 95% HPD interval
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Adjusted R-squared: 0.9443

R> par(mfrow = c(2,2))

R> domx <- seq(-1, 1, length = 300)

R> f1target <- sim$f[[1]](domx) - mean(sim$f[[1]](domx))

R> f2target <- sim$f[[2]](domx) - mean(sim$f[[2]](domx))

R> f3target <- sim$f[[3]](domx) - mean(sim$f[[3]](domx))

R> plot(sim)

R> plot(fit, smoo.index = 1, cred.int = 0.90,

+ fit.col = "red", ylim = c(-1.6, 3.2))

R> lines(domx, f1target, type ="l", lty = 2, lwd = 2)

R> plot(fit, smoo.index = 2, cred.int = 0.90,

+ fit.col = "red", ylim = c(-1.8, 2))

R> lines(domx, f2target, type ="l", lty = 2, lwd = 2)

R> plot(fit, smoo.index = 3, cred.int = 0.90,

+ fit.col = "red", ylim = c(-2.5, 3.8))

R> lines(domx, f3target, type ="l", lty = 2, lwd = 2)
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Figure 5.6: Estimated smooth terms for the Binomial simulated dataset

with approximate 90% pointwise credible intervals. Dashed curves are

the true functions.
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5.6 Discussion

The blapsr package provides R functionalities to fit survival models

and GAMs based on an approximate Bayesian inference technique rely-

ing on a combination of Laplace approximations to conditional posteri-

ors of latent vectors and P-spline smoothers for a flexible specification

of nonlinear model terms. The optimal amount of smoothing underly-

ing the routines is automatically determined either through a grid-based

strategy or more simply through the posterior maximum penalty value.

Being based on a fully Bayesian approach, the blapsr package provides

the user with routines implicitly taking into account the uncertainty sur-

rounding the smoothing parameters. Furthermore, numerical differenti-

ation to obtain gradients and Hessians of the likelihood or the posterior

penalty vector is completely avoided as exact analytical versions have

been derived for the considered models, thus reducing the computational

cost for model fitting.

From here, several proposals can be taken into account to extend and

enhance the blapsr package in the future. First of all, even though the

routines are already relatively fast as compared to existing fully Bayesian

methods, the computational speed can be further enhanced by coding

the most costly sub-routines into a faster language; for example C++

or Fortran. Second, the analytical availability of the (approximate)

posterior penalty vector p(v|D) and its posterior mode (and variance-

covariance matrix) can be considered a good starting point for MCMC

sampling. Instead of relying on a grid-based approach, one can think of

a routine that allows to sample directly from p(v|D) using for instance

a Metropolis or independence sampler to construct the chains (as in

Chapter 4, Section 4.2.7). The latter samples of penalty vectors can

then be used to estimate the joint posterior of the spline and regression

parameters and any required credible interval on latent variables (or

functions thereof). Finally, the good statistical performance behind the

LPS methodology encourages its extension to other models, for instance,

(bivariate) density estimation, frailty models for survival data, Cox or

cure models with time-varying covariates and spatial models.



CHAPTER 6
Conclusion

6.1 Motivation

This concluding chapter aims at giving a global perspective on the

Laplace-P-spline (LPS) methodology developed in this thesis. Taking

the time to reflect on LPS will certainly help the reader to grasp the

“big picture” sketched by the ideas in the previous chapters and to have

a clear overview of the future research prospects to be investigated.

To begin with, a compact recipe is presented in Section 6.2 that em-

phasizes on the main ingredients and the modus operandi employed for

implementing the LPS methodology in a general Bayesian setting. It

highlights the structure on which LPS is based and is a useful starting

point for a researcher wishing to use LPS as an inference instrument in

other model classes. In Section 6.3 focus will be placed on the strengths

and weaknesses of LPS and a summary about the advantages (and dis-

advantages) of using LPS over existing competitors will be formulated.

The blapsr package is also further explored in Section 6.4 by providing

additional simple examples in specific settings. Finally, in Section 6.5

we conclude with an extensive but not exhaustive set of possibilities for

future research revolving around Laplace-P-splines.

165
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6.2 Laplace-P-splines in a nutshell

Ideas behind LPS were strongly motivated by the influential articles of

Eilers and Marx (1996) and Rue et al. (2009). The former paper presents

a simple, yet powerful approach for flexible modeling of smooth terms in

a regression context based on P-splines, with relatively simple formulas

to obtain the estimator of the vector of spline amplitudes and a rather

intuitive interpretation of the parameter controlling the smoothness of

the fit. The latter paper targets the class of latent Gaussian models and

proposes a sampling-free methodology based on nested Laplace approx-

imations to approximate the posterior marginals of the latent variables.

6.2.1 Numerical considerations behind Laplace approxi-

mations

Incorporating the concepts of both papers in a unified framework does

not come without challenges. After having specified the Bayesian model,

one usually starts by computing the Laplace approximation to the con-

ditional posterior of the regression and spline parameter vector ξ (con-

ditionally on η = (λ⊤, δ⊤)⊤, where λ denotes the vector of penalty

parameters). Mathematically, Laplace’s method for approximating a

multivariate (and differentiable) conditional posterior distribution, say

p(ξ|η,D), consists in, first, computing the posterior mode ξ̂ by maximiz-

ing either analytically or numerically log p(ξ|η,D), and, second, comput-

ing the Hessian matrix of log p(ξ|η,D) evaluated at ξ̂, i.e. H(ξ̂). The

resulting Laplace approximation to p(ξ|η,D) is a Gaussian distribution

with mean ξ̂ and variance-covariance matrix equal to −(H(ξ̂))−1, see

e.g. Bornkamp (2011).

Maximization of the (log) conditional posterior latent vector is in rare

circumstances analytically attainable, such that an iterative numerical

approach (e.g. Newton-Raphson) is required. The algorithm must be

constructed with extreme caution to reach the desired posterior mode

ξ̂ and to avoid numerical pitfalls lurking around the corner. Initializing

the iterative optimization process with a “good” starting point for the

regression and spline parameters is of crucial importance. Most of the

time a zero vector works just fine and leads to convergence in a few steps,

but more subtle choices may sometimes be necessary, for instance an

initial guess based on a maximum likelihood estimate of the latent vector
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or a hybrid specification with a zero vector for the B-spline parameters

and another specification for the regression parameters. In any case, the

researcher should diagnose whether the final point towards which the

algorithm has converged is truly a global maximum.

Another recommendation with respect to the Newton-Raphson algo-

rithm is to check that, at each iteration, the objective function to be

maximized is explored in an ascent direction. This can be achieved by

ensuring that the negative Hessian matrix of the objective function is

positive definite (or equivalently that the Hessian is negative definite).

Even then, an additional tuning of the step size can be necessary to

avoid a deterioration of the function to be maximized after a given it-

eration of the algorithm. One should also keep in mind that in order to

accelerate the computation of the posterior mode via Newton-Raphson,

analytical forms for the gradient and Hessian of the conditional poste-

rior of ξ (given the hyperparameters) should be available. Depending

on the complexity of the model likelihood, important efforts need to be

invested to deal with possibly cumbersome formulas.

6.2.2 Optimal smoothing

The next step consists in using the previously derived Laplace approxi-

mation to the conditional posterior of the vector of spline and regression

coefficients to identify the region in p(λ|D) where most of the prob-

ability mass is concentrated. A variety of techniques exist to explore

the approximated posterior p̃(λ|D) and the researcher has a lot of free-

dom to achieve this. The classic approach taken in this thesis when

dim(λ) > 1 is to start with the computation of the marginal posterior

mode of the penalty vector, using a Newton-Raphson algorithm relying

on analytical forms for the gradient and Hessian of log p̃(λ|D). These

analytical derivations are probably the highest price to pay to set up

the LPS strategy, but it is an essential element to guarantee a fast selec-

tion of the penalty parameters tuning the smoothness of the functionals

modeled with B-splines.

In more simple models where dim(λ) = 1, the exploration of the penalty

posterior is easier to achieve since it takes place in a one-dimensional

space. For instance, one could implement a root finding algorithm to

find the mode of log p̃(λ|D) by computing its first derivative to approach
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numerically the point where it becomes zero. Alternatively, an informal

way of tackling the problem is to make a visual inspection of the graph

of p̃(λ|D) and place (equidistant) grid points in a close neighborhood of

the peak of the posterior.

It is also worth mentioning that, regardless of the dimension of the

penalty vector, setting λ at its marginal posterior mode as if it were a

non stochastic quantity, usually suffices to guarantee reliable inference,

as suggested by the simulation results in Chapter 4. The researcher wish-

ing even more accuracy can rely on a grid-based strategy for exploring

p̃(λ|D) or even MCMC samplers. Finally, as the penalty parameter(s)

are positive, it is usually (numerically) advisable to work with log trans-

formed penalties.

6.2.3 Final approximation to the marginal posterior of ξ

The final step consists in using the quadrature points selected during

the exploration of p̃(λ|D) to approximate the marginal posterior of the

regression and spline parameter vector ξ. Typically, the latter posterior

is approximated using a mixture of (multivariate) Gaussian distribu-

tions, for which the mean and variance-covariance matrix are analyti-

cally available. Alternatively, when the uncertainty in the estimation of

λ is ignored and the penalty vector is fixed at its posterior mode, the

final approximation to the marginal posterior of ξ is simply a multivari-

ate Gaussian. From there, point estimates and credible intervals can be

readily constructed. The five steps below summarize the recipe to use

LPS for inference in a generic model.

Recipe for inference with LPS

Denote by ξ the vector containing the regression and spline pa-

rameters. Let η = (λ⊤, δ⊤)⊤, where λ denotes the vector of

penalty parameters in the P-spline model and δ is a set of hyper-

parameters.

I. Specify the (Gaussian) conditional prior of ξ given η, as

well as the prior of the penalty vector λ given δ.
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II. Compute the Laplace approximation to the conditional pos-

terior of the latent vector p̃G(ξ|η,D) (cf. Section 6.2.1) with

posterior mode ξ̂(η).

III. Use the Laplace approximation in (II) to approx-

imate the posterior of hyperparameters p̃(η|D) =(
p(ξ,η|D)/p̃G(ξ|η,D)

)∣∣∣
ξ=ξ̂(η)

. If possible, integrate out

nuisance parameters to obtain the approximated posterior

p̃(λ|D) for the penalty vector (cf. Section 6.2.2).

IV. Explore p̃(η|D) through grid-based approaches or MCMC

samplers to obtain quadrature points {η(m)}. Alternatively,
set η equal to the mode η̂.

V. Use the quadrature points in (IV) to approximate the

marginal posterior of the vector of spline and regression co-

efficients p̃(ξ|D) =
∑

m p̃G(ξ|η(m),D) p(η(m)|D) ∆m. Al-

ternatively, the mode η̂ can be used to obtain a Gaussian

approximation to the posterior p̃(ξ|D) = p̃G(ξ|η̂,D).

6.3 Merits and limitations of Laplace-P-splines

6.3.1 Strengths and weaknesses of LPS

Although the simulation results of the previous chapters convey a clear

message, namely that LPS exhibits excellent frequentist properties for

the considered Bayesian estimators and that LPSMAP is almost as per-

formant as LPS in terms of estimation accuracy despite ignoring the

uncertainty in the selection of the penalty, it is a good exercise to high-

light the positive and negative facets of LPS. This is done in Table 6.1

where the strengths and weaknesses of the methodology are identified.

Strengths

+ LPS is natively built to approximate the joint marginal

posterior of the vector of spline and regression parameters.

+ LPS is not a black box and all the steps leading to the final

approximated posterior latent vector are clearly explained.
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+ Availability of the analytical gradient/Hessian permits fast and

efficient exploration of the posterior penalty vector.

+ LPS is fully Bayesian. If required, the methodology can be

extended to inject additional prior information.

+ The latent field dimension is independent of the sample size.

+ Construction of (approximate) pointwise credible intervals is

relatively straightforward, even for complex functions of regression

and spline parameters.

+ LPSMAP is much faster than LPS with more or less the same

estimation accuracy.

+ LPS(MAP) is generally much faster than existing Bayesian

methods fully relying on MCMC.

Weaknesses

− LPS currently focuses on a single smoother (P-splines).

− The requirement to obtain explicit expressions for the gradient

and Hessian of log p(ξ|η,D) for a given model class.

− The deterioration of the frequentist properties of the

parameters and functional estimates when information is

very sparse.

Table 6.1: Strengths and weaknesses of LPS(MAP).

To complete the merits and limits of LPS, a summary of the arguments

relating LPS to other competitors considered in this thesis is provided

in the next sections.
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6.3.2 LPS vs INLA

Arguments in favor of LPS

Although some similarities are apparent between LPS and INLA, es-

pecially in the approach for approximating the hyperparameter vector

p(η|D), there are noteworthy methodological differences. Classic INLA

is inherently focusing on posterior marginals of univariate latent vari-

ables, while LPS is natively multivariate and emphasizes on approxi-

mating the marginal joint posterior of the latent vector. From there,

pointwise and set estimators for functions of the latent vector can be

relatively easily constructed. Furthermore, as smooth terms in (general-

ized) additive models are exclusively modeled with P-splines, full-fledged

analytical formulas are available for the gradient and Hessian of the pos-

terior penalty vector, whereas INLA relies on numerical differentiation

techniques.

Another fundamental difference lies in the specification of the latent

vector: INLA works with a latent field having a dimension proportional

to the sample size n, while in LPS it is independent of n. Finally, an

important argument in favor of LPS is that the methodological outline

employed is relatively simple and reflected in the organized structure

underlying the routines of the blapsr package. The structure of the

INLA package is less intuitive in that regard and is reported by many

users as a black box.

Arguments in favor of INLA

The main advantage of INLA over LPS is its generality. In fact, INLA

can be used for Bayesian regression in various models (see e.g. Gómez-

Rubio, 2020) such as (spatio-)temporal models, mixed-effects models,

multilevel models and more. In addition, several books have already

been written on the topic and many illustrative datasets and applications

of theR-INLA package are available. Finally, INLA offers more options

for the selection of smoothers and is very efficient from a computational

view point as it naturally takes advantage of parallelization possibilities

offered by modern multi-core processors (Mantovan and Secchi, 2010).
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6.3.3 LPS vs BayesX

Argument in favor of LPS

When comparing LPS with a fully Bayesian competitor such as BayesX,

the main argument in favor of LPS(MAP) is its computational speed (cf.

simulation results in Chapter 4). Indeed, as BayesX (and its R interface

R2BayesX) is based on MCMC simulation techniques to fit models in

the wide class of structured additive regression models, the cost of draw-

ing samples from the target posterior distribution (of the vector of spline

and regression parameters) often outweighs the cost of approximating

the posterior latent vector with iterated Laplace approximations.

Argument in favor of BayesX

As LPS is a methodology developed for the class of latent Gaussian

models, the Gaussian prior imposed on the latent variables translates

in a “near-Gaussian” and (often) symmetric posterior for the vector of

regression and spline parameters as the likelihood will usually mildly

affect the bell-shaped prior. In that direction, MCMC based methods

may be preferable as they are able to reconstruct posterior targets with a

stronger degree of asymmetry. This would be particularly interesting for

non-penalized regression parameters, as strongly asymmetric posteriors

are sometimes observed.

6.3.4 LPS vs MGCV

Argument in favor of LPS

As LPS is a fully Bayesian approach, the joint posterior of the penalty

vector can be characterized and the uncertainty in the selection of the

penalty vector can be taken into account. This is not the case for MGCV

based methods as they rely on an empirical Bayes approach that selects

a single value for the penalty vector (usually the posterior mode) and,

hence, ignores the uncertainty surrounding the penalty parameter selec-

tion.

Argument in favor of MGCV

The mgcv package developed by Simon Wood is already very mature

and well documented. It also gathers robust and extremely fast routines
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for inference that are far more general than the routines provided in the

blapsr package which is still in its infancy.

6.4 Additional (simple) examples with blapsr

6.4.1 Density estimation

The gamlps() routine of the blapsr package is used here1 for smoothing

a histogram of the Old Faithful Geyser Data (see e.g. Weisberg, 1980;

Silverman, 1986) obtained from the datasets package in R. The dataset

consists of n = 272 observations of eruption times (in minutes). The

following lines of code yield a smoothed version of the histogram as

show in Figure 6.1.

R> library("blapsr")

R> data("faithful")

R> erupt <- faithful$eruptions

R> xl <- 1.3

R> xr <- 5.5

R> brk <- seq(xl, xr, by = 0.05)

R> hst <- hist(erupt, breaks = brk, plot = T,

+ col = "lightgrey", xlab = "Eruption time (in minutes)",

+ main = "", freq = F)

R> x <- hst$mids

R> y <- hst$counts

R> h <- x[2] - x[1]

R> fit <- gamlps(y ~ 1 + sm(x), K = 30, penorder = 3,

+ family = "poisson")

R> mu <- fit$fitted.values

R> lines(x, mu * h, col = "red", lwd = 2)

6.4.2 Scatterplot smoothing

In the context of scatterplot smoothing, the motorcycle data analyzed

in Silverman (1985) can be used as a simple example to illustrate the

use of the amlps() routine of the blapsr package. The data comes from

the MASS package of Venables and Ripley (2002) with a sample of size

n = 133 that consists in measurements of head acceleration in units of

1Special thanks to Paul Eilers for providing this smoothing histogram example.
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Figure 6.1: Smoothed version of the histogram for the Old Faithful

Geyser Data with gamlps().

gravity (g) at different times in milliseconds (ms) after impact to test

crash helmets. The code below provides a smoothed version of the scat-

terplot with 20 cubic B-splines and a second order penalty. Figure 6.2

gives a graphical representation of the motorcycle data with the smooth

fitted curve.

R> library("blapsr")

R> library("MASS")

R> fit <- amlps(accel ~ sm(times), data = mcycle, K = 20,

+ penorder = 2, cred.int = 0.95)

R> xgrid <- seq(min(mcycle$times), max(mcycle$times),

+ length = 200)

R> smoo.fit <- plot(fit, xp = xgrid, smoo.index = 1,

+ show.info = FALSE, show.plot = FALSE)

R> plot(mcycle, ylim = c(-150, 100),

+ ylab = "Acceleration (g)", xlab = "Time (ms)")

R> lines(smoo.fit$xp, fit$linear.coeff[1] + smoo.fit$sm.xp,

+ lwd = 2)

R> abline(h = 0)

6.4.3 Count data regression

We provide a further example based on the female horseshoe crabs data

analyzed in Agresti (2013). The dataset can be downloaded from http:

//users.stat.ufl.edu/~aa/cda/cda.html and includes n = 173 ob-

servations on several crab characteristics.

http://users.stat.ufl.edu/~aa/cda/cda.html
http://users.stat.ufl.edu/~aa/cda/cda.html
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Figure 6.2: Smoothed version of the motorcycle data with amlps().

The response variable of interest is the number of male crabs (called

“satellites”) that gather around females during spawning season to fer-

tilize eggs. For simplicity, the only explanatory variable considered here

is the carapace width (in cm) of the female crab.

We use the gamlps() routine to fit a Poisson model with a log link that

specifies the log mean number of satellites as a smooth function of the

female carapace width. The code given below loads the dataset and

fits a Poisson model with 15 cubic B-splines and a third order penalty.

Figure 6.3 (a) is a scatterplot of the number of satellites versus female

carapace width. Figure 6.3 (b) shows the smoothing curve along with a

set of points for 8 width categories for which the coordinate on the x-

axis is the mean carapace width and the coordinate on the y-axis is the

mean number of satellites (see Agresti, 2013, p. 124). These quantities

are encoded in the vectors mean.widths and mean.satellites respec-

tively. The upward trend reveals that the mean cluster size of satellites

gathering around a female increase with the carapace width.

R> library("blapsr")

R> # Read dataset

R> crabs <- read.table("Crabs.dat", header = TRUE)

R> fit <- gamlps(sat ~ sm(width), data = crabs,

+ family = "poisson", K = 15, penorder = 3)

R> mean.widths <- c(22.69286, 23.84286, 24.77500, 25.83846,

+ 26.79091, 27.73750, 28.66667, 30.40714)

R> mean.satellites <- c(1.000000, 1.428571, 2.392857,
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+ 2.692308, 2.863636, 3.875000, 3.944444, 5.142857)

R> xx <- seq(min(crabs$width), 32, length = 100)

R> yfit <- plot(fit, smoo.index = 1, xp = xx,

+ show.info = FALSE, show.plot = FALSE)

R> par(mfrow = c(1, 2))

R> plot(crabs$width, crabs$sat, type = "p", pch = 16,

+ xlab = "Carapace width (cm)",

+ ylab = "Number of satellites", main = "(a)")

R> plot(xx, exp(fit$linear.coeff[1] + yfit$sm.xp),

+ type = "l", col = "blue",

+ ylab = "Number of satellites",

+ xlab = "Carapace width (cm)", ylim = c(0, 5.5),

+ xlim = c(21, 32), main = "(b)")

R> lines(mean.widths, mean.satellites, type ="p", pch = 16)

R> legend("topleft", pch = 16,

+ "Mean for 8 carapace width categories", bty = "n")
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Figure 6.3: Poisson model with gamlps() to fit the crabs data.

In Table 6.2, we report the sample mean and variance of the number

of satellites for the 8 carapace width categories considered in Agresti

(2013). From this table, it is easy to see that the conditional variance of

the response variable (conditional on a given category for the carapace

width) exceeds the conditional mean. This phenomenon is known in

the literature as overdispersion. As the Poisson model presented above

assumes that the mean of the response is equal to its variance (equidis-

persion assumption), mathematically E(Y ) := µ = V (Y ), it may not

be the best option to fit the crabs data. A better alternative would be
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to extend LPS in the framework of a negative Binomial model where

the variance of the response is specified as a quadratic function of the

mean response V (Y ) = µ+ δµ2, where δ > 0 is usually interpreted as a

dispersion parameter.

Category Mean Variance

1 1.00 2.77

2 1.43 8.88

3 2.39 6.54

4 2.69 11.38

5 2.86 6.89

6 3.88 8.81

7 3.94 16.88

8 5.14 8.29

Table 6.2: Sample mean and variance of the number of satellites for the

8 categories considered in Agresti (2013).

6.5 Final discussion and future research

The aim of this thesis is to bridge the gap between Laplace approxima-

tions and P-splines for fast Bayesian inference in survival models and

(generalized) additive models. The proposed Laplace-P-spline method-

ology is a much faster alternative for inference in latent Gaussian models

than existing MCMC methods that usually require more computational

resources to sample from (often complex) posterior distributions. All

the chapters are built from the ground up and are constructed around

simulation scenarios and real data applications. It should be empha-

sized that in the different applications of LPS, the choice of the number

of B-splines in the basis was completely arbitrary. We simply followed

the philosophy of using a “large” number of B-splines with a penalty to

counterbalance the flexibility. Whenever an unnecessary large number

of B-splines was used to model a smooth term, the only purpose was

to charge the model with more parameters than necessary to confirm

that LPS was able to (numerically) cope with the situation. The same

argument holds for the order of the penalty used in the text. Alternat-

ing (arbitrarily) between a second and third order penalty allowed us to

monitor the LPS behavior under different penalty structures. The ma-

terial presented in this thesis is a good starting point to understand in
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detail the LPS methodology for further use with other classes of models.

A non-exhaustive presentation of the possible extensions and applica-

tions of this methodology is proposed in the following sub-sections.

6.5.1 Reaching analytically tractable penalty posteriors

Undoubtedly, the most severe computational burden in the LPS estima-

tion procedure comes from the exploration of the posterior penalty vec-

tor. The latter requires an iterative algorithm (e.g. Newton-Raphson)

to find its posterior mode and eventually a grid (or MCMC sampler)

to compute the marginal posterior distribution of the regression and

spline parameters. Hence, the following question arises naturally: “Is

it possible to somehow arrive at a posterior penalty distribution that

is analytically tractable?”. Asked differently, is it possible to bypass

Newton methods and to obtain a reliable analytical approximation to

the mode of the posterior penalty vector? If the answer is positive, then

the estimation of a complex model with LPS would almost be possi-

ble in real time and results would be available in a few milliseconds. A

tractable form for the posterior distribution of the penalty vector would

also facilitate the construction of credible regions for these parameters

and, hence, the selection of the necessary grid points to obtain p(ξ|D).

In particular, this would be interesting for models with penalty vectors

in high dimension.

6.5.2 Extending LPS to spatial models

Another direction completely ignored in this thesis is the implementa-

tion of LPS in spatial models. Datasets with spatial and geographical

characteristics are available in many different fields, for instance in epi-

demiology where data are collected to understand the dynamics in the

propagation of a given disease. Geo-referenced data is also of inter-

est in meteorology, agriculture, ecology and demography among others.

Extension of the LPS methodology in a spatial framework requires to

extend the one-dimensional B-spline smoothers to higher-dimensional

smoothers based on tensor products of B-splines with difference penal-

ties imposed on neighboring coefficients of the tensor products (Eilers

et al., 2006). The idea would be to start writing the LPS spatial model

for data in two dimensions and derive the analytical formula for the

posterior penalty vector that will be explored to determine the amount
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of smoothness. Once this part is fully mastered, one can proceed with

an extension of the LPS formulas in larger dimensions.

6.5.3 Refinements and extensions in survival analysis

The LPS promotion time cure model presented in Chapter 2 can be

further refined by incorporating cluster-specific effects such as in frailty

models (see e.g. Wienke, 2010). When data are clustered like in the

oropharynx carcinoma dataset in Section 2.5.2, it may be important to

include this information in the model to account for possible cluster ef-

fects (e.g. effect of a clinic) on the event time distribution for susceptible

subjects and on cure probabilities. The extension of cure models is in-

vestigated in Gallardo et al. (2016), where two random effects are used

for each cluster, one that explains the effect (of the cluster) on the sur-

vival time for susceptible subjects and the other that explains the effect

on the cure fraction. The joint distribution of the random effects vector

is taken to be a bivariate normal distribution.

To extend even further the LPS methodology in the family of cure re-

gression models, one can consider an adaptation to the class of mixture

cure models proposed by Boag (1949) and Berkson and Gage (1952).

This model class directly specifies the population survival function as a

mixture of two types of subjects, namely the cured and the susceptibles.

A modeling possibility would be to specify the conditional survival func-

tion of the susceptibles via a Cox proportional hazards model where the

baseline survival function is approximated with (cubic) B-splines.

There are many other research directions in which to extend LPS for

time-to-event data. One could for instance consider an extension of

the classic Cox model, to handle time-varying covariates. Introducing

this dynamic flavor is important whenever a study involves subjects for

which some covariate variables change over time (e.g. tumor size, blood

pressure, glucose level, . . . ). This could be done within the framework

of joint models for survival and endogenous longitudinal data (see for

instance Ibrahim et al., 2010; Rizopoulos, 2012). Also, instead of con-

sidering the classic right censoring scheme, one could extend LPS to

data with left censoring, interval censoring and even consider different

truncation scenarios (see e.g. Lambert, 2020).
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6.5.4 Improving blapsr

The blapsr package is currently in its early development phase and thus

is far from being completely satisfactory. In fact, there is still a long way

ahead to reach a versatile and general toolbox to use LPS for approxi-

mate Bayesian inference. First of all, it would be a good idea to rewrite

the numerically demanding parts of the code using C++ or Fortran.

Another track to improve the speed of the package procedures would be

to parallelize the exploration of the penalty posterior in large dimensions

and take advantage of the multi-core processors that are omnipresent in

the computer market. Taken together, parallelized algorithms and sub-

routines rewritten in a more efficient language will yield a lightning fast

package even if the underlying LPS framework is fully Bayesian.

Moreover, we may say a few words regarding the extension of the smoother

considered in this thesis. In fact, at this stage of its development, the

package only allows the user to work with cubic B-splines and a second

or third order penalty. Giving the user the possibility to specify his own

penalty matrix, his own B-spline basis with personalized knot positions,

or even alternative function bases would be desirable. Finally, a fur-

ther layer of sophistication can be brought to the routines underlying

blapsr by allowing factor-by-curve interactions, i.e. the possibility to fit

different smooth terms for each level of a categorical covariate.
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A1. Marginal prior of the penalty parameter λ

Let us derive the marginal prior for λ starting from the hierarchical

priors λ|δ ∼ G(ν/2, (νδ)/2) and δ ∼ G(aδ, bδ):

p(λ) =

∫ +∞

0
p(λ, δ) dδ

=

∫ +∞

0
p(λ|δ) p(δ) dδ

=

∫ +∞

0

(νδ)
ν
2

2
ν
2

1

Γ(ν2 )
λ

ν
2
−1 exp

(
−δ νλ

2

)
baδδ

Γ(aδ)
δaδ−1 exp(−δbδ) dδ

∝ λ
ν
2
−1

∫ +∞

0
δ

ν
2
+aδ−1 exp

(
−δ
(
νλ

2
+ bδ

))
dδ

∝ λ
ν
2
−1

(
νλ

2
+ bδ

)−( ν
2
+aδ)

∝ λ
ν
2
−1

(
bδ

(
1 +

νλ

2bδ

))−( ν
2
+aδ)

∝ λ
ν
2
−1

(
1 +

νλ

2bδ

)−( ν
2
+aδ)

.

Fixing aδ = bδ = 0.5 and ν = 1, we thus have p(λ) ∝ (
√
λ (1 + λ))−1.

Recall that a random variable X with a Beta-prime distribution X ∼
BetaPrime(a, b), a > 0, b > 0 has probability density function (see e.g.

Dos Passos, 2009, p.330):

p(x) =

{
xa−1(1+x)−a−b

B(a,b) for x > 0

0 otherwise,
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where the denominator B(a, b) =
∫ 1
0 t

a−1(1 − t)b−1 dt is the beta func-

tion. Hence replacing a = b = 0.5 in the above density, we recover up

to a multiplicative constant p(x) ∝ (
√
x (1 + x))−1, and so we have

λ ∼ BetaPrime(0.5, 0.5). In the latter case, the normalizing constant

cnorm can be obtained analytically by computing the inverse of the beta

function at a = b = 0.5:

cnorm = (B(0.5, 0.5))−1

=

(∫ 1

0

1√
t(1− t)

dt

)−1

=

(
2 arcsin(

√
t)
∣∣∣
1

0

)−1

= (2 arcsin(1)− 2 arcsin(0))−1

= π−1

Below, a graphical illustration is shown for p(λ) under the two con-

figurations used in this thesis namely aδ = bδ = 0.5, ν = 1 and

aδ = bδ = 10−4, ν = 3.
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Figure A1: Marginal prior of the penalty parameter λ under two param-

eterizations for the hyperparameters. (a) aδ = bδ = 0.5, ν = 1 and (b)

aδ = bδ = 10−4, ν = 3.
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A2. Conditional posterior distributions of the Bayesian

P-spline model

For the homoscedastic model in Section 1.3.2, the likelihood is:

L(θ, τ ;D) ∝ τ
n
2 exp

(
−0.5τ ∥y −Bθ∥2

)
.

The conditional posterior of the vector of B-spline amplitudes is:

p(θ|λ, τ,D) ∝ L(θ, τ ;D) p(θ|λ, τ)
∝ exp

(
−0.5τ ∥y −Bθ∥2

)
exp

(
−0.5λτθ⊤Pθ

)

∝ exp
(
τy⊤Bθ − 0.5τ θ⊤(B⊤B + λP )θ

)
.

The above expression is the exponential of a quadratic form in θ and is

(up to a multiplicative constant) the density of a Gaussian with mean

µθ and variance-covariance matrix Σθ obtained as follows:

∇θ log p(θ|λ, τ,D) = 0

⇔ τB⊤y − τ(B⊤B + λP )θ = 0

⇔ (B⊤B + λP )−1B⊤y = µθ.

The covariance matrix corresponds to the inverse of the negative Hessian,

i.e. Σθ =
(
−∇2

θ log p(θ|λ, τ,D)
)−1

= τ−1(B⊤B + λP )−1 and hence

finally, (θ|λ, τ,D) ∼ Ndim(θ)

(
(B⊤B + λP )−1B⊤y, τ−1(B⊤B + λP )−1

)
.

Let us now focus on the conditional posterior of the precision:

p(τ |θ, λ,D) ∝ L(θ, τ ;D) p(θ|λ, τ) p(τ)
∝ τ

n+K
2

−1 exp
(
−0.5τ

(
∥y −Bθ∥2 + λθ⊤Pθ

))
,

(τ |θ, λ,D) ∼ G
(
0.5(n+K), 0.5

(
∥y −Bθ∥2 + λθ⊤Pθ

))
.

The conditional posterior for the hyperparameter δ is:

p(δ|λ,D) ∝ p(λ|δ) p(δ)
∝ δ

ν
2
+aδ−1 exp (−δ(0.5νλ+ bδ)

so, (δ|λ,D) ∼ G (0.5ν + aδ, 0.5νλ+ bδ) .
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Finally, he conditional posterior of the penalty parameter is given by:

p(λ|θ, τ, δ,D) ∝ p(θ|λ, τ) p(λ|δ)
∝ λ

K+ν
2

−1 exp
(
−0.5λ(τθ⊤Pθ + νδ)

)

so, (λ|θ, τ, δ,D) ∼ G
(
0.5(K + ν), 0.5(τθ⊤Pθ + νδ)

)
.
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B1. Conditional mean

The vector ξ∗c(λ) ∈ Rdim(ξ)−1 is the conditional posterior mean of the

Gaussian approximation for a given ξK = c and should not be confused

with ξ∗cc(λ). To obtain ξ∗c(λ), we compute the Gaussian approximation

around the posterior mode of p(ξ|λ,D) as described in Section 2.3.3

and find a multivariate (dim(ξ)-dimensional) Gaussian distribution with

mean ξ∗(λ) and covariance matrix Σ∗(λ).

Next, using classic properties of the Normal density, we derive the distri-

bution of ξ−K = (ξ1, . . . , ξK−1, ξK+1, . . . , ξdim(ξ)) ∈ Rdim(ξ)−1 given the

constraint ξK = c. The resulting distribution is Gaussian with mean vec-

tor ξ∗c(λ) = ξ∗−K(λ) + Σ̃2,1(λ)Σ̃
−1
1,1(λ)

(
c− ξ∗K(λ)

)
and covariance matrix

Σ∗
c(λ) = Σ̃2,2(λ)− Σ̃2,1(λ)Σ̃

−1
1,1(λ)Σ̃1,2(λ) with the following elements:

Σ̃1,1(λ) = Σ∗
K,K(λ),

Σ̃1,2(λ) = (Σ̃2,1(λ))
⊤

= (Σ∗
K,1(λ), . . . ,Σ

∗
K,(K−1)(λ),Σ

∗
K,(K+1)(λ), . . . ,Σ

∗
K,dim(ξ)(λ))

and Σ̃22(λ) is the matrix Σ∗(λ) without row and column K. The vector

ξ∗cc(λ) ∈ Rdim(ξ) corresponds to ξ∗c(λ) to which we add ξK = c at position

K, i.e. ξ∗cc(λ) = (ξ∗c,1(λ), . . . , ξ
∗
c,K−1(λ), c, ξ

∗
c,K(λ), . . . , ξ∗c,dim(ξ)−1(λ)),

where ξ∗c,i(λ) denotes the ith entry of ξ∗c(λ).
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B2. Gradients for credible intervals

Gradient associated to the baseline survival function

∇θcG0(θ
m
c,0|t) =




j(t)∑

j=1

h0(sj)∆j




−1

×




∑j(t)
j=1 exp

(∑K
k=1 θkbk(sj)

)
b1(sj)∆j

...
∑j(t)

j=1 exp
(∑K

k=1 θkbk(sj)
)
bK−1(sj)∆j




θc=θm
c,0

.

Gradient associated to the population survival function

∇ξcG0(ξ
m
c,0|x, z, t) =




v(θ,γ)−1exp(z⊤γ)S0(t)
exp(z⊤γ)

(∑j(t)
j=1 h0(sj)b1(sj)∆j

)

...

v(θ,γ)−1exp(z⊤γ)S0(t)
exp(z⊤γ)

(∑j(t)
j=1 h0(sj)bK−1(sj)∆j

)

1

x1
...

xp

v(θ,γ)−1exp(z⊤γ)S0(t)
exp(z⊤γ)

(∑j(t)
j=1 h0(sj)∆j

)
z1

...

v(θ,γ)−1exp(z⊤γ)S0(t)
exp(z⊤γ)

(∑j(t)
j=1 h0(sj)∆j

)
zl




ξc=ξmc,0

,

with v(θ,γ) = 1− exp
(
−∑j(t)

j=1 exp
(∑K

k=1 θkbk(sj)
)
∆j

)exp
(
z⊤γ
)
.



APPENDIX B 189

Gradient associated to the conditional probability

P (T = +∞|T ≥ t,x, z)

∇ξcG0(ξ
m
c,0|x, z, t) =




−exp(z⊤γ)
∑j(t)

j=1 h0(sj)b1(sj)∆j

...

−exp(z⊤γ)
∑j(t)

j=1 h0(sj)bK−1(sj)∆j

1

x1
...

xp

−z1exp(z⊤γ)
∑j(t)

j=1 h0(sj)∆j

...

−zlexp(z⊤γ)
∑j(t)

j=1 h0(sj)∆j




ξc=ξmc,0

.
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C1. Efficient evaluation of ϕ(λ)

The scalar function ϕ(λ) := 1
2 y⊤(In−B(B⊤B+Qλ

ξ )
−1B⊤)y has to be

frequently evaluated in our Laplace-P-spline approach as it is present in

the gradient and Hessian of log p(v|D). To efficiently evaluate ϕ(·) one
can first take the trace :

Tr(ϕ(λ)) =
1

2

(
Tr(y⊤y)− Tr

(
y⊤B(B⊤B +Qλ

ξ )
−1B⊤y

))
.

Since the trace is invariant under cyclic permutations, one has:

Tr(ϕ(λ)) =
1

2

(
Tr(y⊤y)− Tr

(
B⊤yy⊤B(B⊤B +Qλ

ξ )
−1
))

.

Furthermore, B⊤yy⊤B is a symmetric matrix, so:

Tr(ϕ(λ)) =
1

2

(
Tr(y⊤y)− Tr

((
B⊤yy⊤B

)⊤
(B⊤B +Qλ

ξ )
−1

))
.

Using the Hadamard product ◦, the trace becomes:

Tr(ϕ(λ)) =
1

2


Tr(y⊤y)−

∑

i,j

((
B⊤yy⊤B

)
◦ (B⊤B +Qλ

ξ )
−1
)
i,j


 ,

where Σi,j is the sum over the entries of a matrix. Computing with

the Hadamard product is much faster than taking the trace of matrix

products.
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C2. Fast evaluation of empirical moments

The skew-normal match to the jth conditional p(vj |v̂−j ,D) requires

to compute the empirical moments of the latter expression using an

equidistant grid. For each element of the grid vjl, evaluating the con-

ditional posterior involves the computation of a (potentially large) ma-

trix inverse
(
B⊤B + Q

ṽj

ξ

)−1
through the scalar function ϕ(vjl|v̂−j) =

1
2y

⊤
(
In − B

(
B⊤B + Q

ṽj

ξ

)−1
B⊤
)
y, where ṽj is a q-dimensionsal vec-

tor with all entries fixed at v̂, except entry j which is vjl, that is

ṽj = (v̂1, . . . , v̂j−1, vjl, v̂j+1, . . . , v̂q). To circumvent the matrix inverse,

let us write Q
ṽj

ξ as follows:

Q
ṽj

ξ =

(
ζIp+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag
(
exp(v̂1), . . . , exp(vjl), . . . , exp(v̂q)

)
⊗ P

)

=

(
ζIp+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag
(
exp(v̂1), . . . , 0, . . . , exp(v̂q)

)
⊗ P

)

+exp(vjl)

(
0p+1,p+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag
(
0, . . . , 1, . . . , 0

)
⊗ P

)
.

Also, define the dim(ξ)× dim(ξ) matrices:

Q̃−j
ξ :=

(
ζIp+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag
(
exp(v̂1), . . . , 0, . . . , exp(v̂q)

)
⊗ P

)
,

P̃j :=

(
0p+1,p+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag
(
0, . . . , 1, . . . , 0

)
⊗ P

)
.

Since P̃j is of rank (K − 1), we perturb the main diagonal by ϵ = 10−10

and define the full rank symmetric matrix P̆j := P̃j + ϵIdim(ξ) so that

Q
ṽj

ξ ≈ Q̃−j
ξ + exp(vjl)P̆j and hence:

(
B⊤B +Q

ṽj

ξ

)−1 ≈
(
B⊤B + Q̃−j

ξ + exp(vjl)P̆j

)−1

≈
(
Bj + exp(vjl)P̆j

)−1
,

(
with Bj = B⊤B + Q̃−j

ξ

)

≈
(
Bj + exp(vjl)VjΛjV

⊤
j

)−1
,
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where VjΛjV
⊤
j is the spectral decomposition of P̆j with Vj the orthogonal

matrix of eigenvectors satisfying VjV
⊤
j = Idim(ξ) and V

−1
j = V ⊤

j . Matrix

Λj is a diagonal matrix with the eigenvalues of P̆j on the main diagonal.

One can further decompose:

(
B⊤B +Q

ṽj

ξ

)−1≈
(
Bj + exp(vjl)VjΛjV

⊤
j

)−1

≈
(
VjV

⊤
j BjVjV

⊤
j + Vj exp(vjl)ΛjV

⊤
j

)−1

≈
(
Vj
(
V ⊤
j BjVj + exp(vjl)Λj

)
V ⊤
j

)−1

≈ Vj
(
V ⊤
j BjVj + exp(vjl)Λj)

−1V ⊤
j

≈ Vj

(
V ⊤
j BjVj + exp(vjl)Λ

1
2
j Λ

1
2
j

)−1
V ⊤
j

≈ Vj

(
Λ

1
2
j

(
Λ
− 1

2
j V ⊤

j BjVjΛ
− 1

2
j + exp(vjl)Idim(ξ)

)
Λ

1
2
j

)−1

V ⊤
j

≈ VjΛ
− 1

2
j

(
Λ
− 1

2
j V ⊤

j BjVjΛ
− 1

2
j + exp(vjl)Idim(ξ)

)−1
Λ
− 1

2
j V ⊤

j .

Using the spectral decomposition Λ
− 1

2
j V ⊤

j BjVjΛ
− 1

2
j = UjDjU

⊤
j , where

Uj is an orthogonal matrix and Dj a symmetric matrix with eigenvalues

on the main diagonal, one has:

(
B⊤B +Q

ṽj

ξ

)−1 ≈ VjΛ
− 1

2
j

(
UjDjU

⊤
j + exp(vjl)Idim(ξ)

)−1
Λ
− 1

2
j V ⊤

j

≈ VjΛ
− 1

2
j

(
UjDjU

⊤
j + Uj exp(vjl)U

⊤
j

)−1
Λ
− 1

2
j V ⊤

j

≈ VjΛ
− 1

2
j

(
Uj

(
Dj + exp(vjl)Idim(ξ)

)
U⊤
j

)−1

Λ
− 1

2
j V ⊤

j

≈ VjΛ
− 1

2
j Uj

(
Dj + exp(vjl)Idim(ξ)

)−1
U⊤
j Λ

− 1
2

j V ⊤
j ,

where
(
Dj + exp(vjl)Idim(ξ)

)−1
is the inverse of a diagonal matrix and

is equal to a diagonal matrix with the inverse of the diagonal entries:

Dj :=
(
Dj + exp(vjl)Idim(ξ)

)−1

= diag
((
Dj11 + exp(vjl)

)−1
, . . . ,

(
Djdim(ξ)dim(ξ) + exp(vjl)

)−1
)
.
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Finally, the inverse is approximated as:

(
B⊤B +Q

ṽj

ξ

)−1 ≈ VjΛ
− 1

2
j UjDjU

⊤
j Λ

− 1
2

j V ⊤
j .

From a computational perspective, using the above approximating for-

mula is much faster than computing the direct inverse. In fact, one

can compute the matrices Vj ,Λj , Uj and Dj once and for all across di-

mensions j = 1, . . . , q and then simply evaluate the above approximate

version of the inverse on the chosen grid points {vjl}Ll=1 to compute the

desired empirical moments.



Appendix D (Chapter 4)

D1. One-parameter exponential family distributions

Poisson distribution

Let Y ∼ Poisson(µ) with probability mass function:

p(y) =
µy exp(−µ)

y!
, y ∈ N

⇔ exp (log(p(y))) = exp (y log(µ)− µ− log(y!)) .

Let γ = log(µ), s(γ) = exp(γ), κ = 1 and c(y,κ) = − log(y!). The

above equation becomes:

p(y) = exp

(
yγ − s(γ)

κ
+ c(y,κ)

)
,

such that the Poisson distribution belongs to the one-parameter expo-

nential family and has the following associated functions s′(γ) = s′′(γ) =

exp(γ), the canonical link is g(µ) = log(µ) with g′(µ) = (s′′(γ))−1 =

1/ exp(γ) and weight w =
(
Var(y)(g′(µ))2

)−1
= s′′(γ) = exp(γ).

Gaussian distribution

Let us now consider the random variate Y ∼ N (µ, σ2) with known

variance σ2 and probability density function:

p(y) =
1√
2πσ2

exp

(
−1

2

(y − µ)2

σ2

)

195
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⇔ exp (log(p(y))) = exp

(
−1

2
log(2πσ2)− 1

2

(y − µ)2

σ2

)

= exp

(
−1

2
log(2πσ2)− y2

2σ2
+
yµ

σ2
− µ2

2σ2

)

= exp



yµ−

(
µ2

2

)

σ2
− 1

2
log(2πσ2)− y2

2σ2


 .

Let γ = µ, s(γ) = γ2/2, κ = σ2 and c(y,κ) = −(1/2) log(2πσ2) −
y2/(2σ2). The above equation becomes:

p(y) = exp

(
yγ − s(γ)

κ
+ c(y,κ)

)
,

such that the Normal distribution with known variance belongs to the

one-parameter exponential family and has the following associated func-

tions s′(γ) = γ, s′′(γ) = 1. The canonical link is the identity link,

g(µ) = µ with g′(µ) = 1 and weight w =
(
Var(y)(g′(µ))2

)−1
= 1/κ.

Binomial distribution

For the Binomial distribution Y ∼ Bin(m, p),m ∈ N+, p ∈ (0, 1), with

y ∈ {0, 1 . . . ,m}, we have the following probability mass function:

p(y) =

(
m

y

)
py(1− p)(m−y)

⇔ exp (log(p(y))) = exp

(
y log(p) + (m− y) log(1− p) +

log

(
m!

y!(m− y)!

))

= exp

(
y log(p)− y log(1− p) +m log(1− p) +

log

(
m!

y!(m− y)!

))
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= exp

(
y log

(
p

1− p

)
+m log(1− p) +

log

(
m!

y!(m− y)!

))
.

Let γ = log(p/(1− p)) = logit(p), s(γ) = m log(1 + exp(γ)), κ = 1 and

c(y,κ) = log (m!/(y!(m− y)!)). The above equation becomes:

p(y) = exp

(
yγ − s(γ)

κ
+ c(y,κ)

)
,

so, the Binomial distribution belongs to the one-parameter exponential

family with s′(γ) = (m exp(γ))/(1 + exp(γ)), s′′(γ) = (m exp(γ))/(1 +

exp(γ))2. The mean is related to p as follows µ = mp or p = µ/m, such

that with a canonical link g(µ) = γ = log(p/(1 − p)) = log(µ/(m − µ))

and weight w =
(
Var(y)(g′(µ))2

)−1
= µ(m− µ)/m.

Bernoulli distribution

Let Y ∼ Bern(p) be a Bernoulli random variable with p ∈ (0, 1), y ∈
{0, 1} and probability mass function:

p(y) = py(1− p)1−y

⇔ exp(log(p(y))) = exp (y log(p) + (1− y) log(1− p))

= exp (y log(p)− y log(1− p) + log(1− p))

= exp

(
y log

(
p

1− p

)
+ log(1− p)

)
.

Let γ = log(p/(1− p)) = logit(p), s(γ) = log(1+exp(γ)) = − log(1− p),
κ = 1 and c(y,κ) = 0. The above equation becomes:

p(y) = exp

(
yγ − s(γ)

κ
+ c(y,κ)

)
,

hence, the Bernoulli distribution belongs to the one-parameter expo-

nential family with s′(γ) = exp(γ)/(1 + exp(γ)), s′′(γ) = exp(γ)/(1 +

exp(γ))2. The mean of Y is µ = p; the canonical link is g(µ) = γ =

log(µ/(1− µ)) and weight w =
(
Var(y)(g′(µ))2

)−1
= µ(1− µ).
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D2. Gradient and Hessian of log p̃(v|D)

This appendix provides in full detail the analytical derivations of the

gradient and Hessian associated to the (log-) posterior of the log penalty

vector:

log p̃(v|D)

=̇− 1

2
log |B⊤W̃B +Qv

ξ |︸ ︷︷ ︸
Term I

+

(
ν +K − 1

2

)
q∑

j=1

vj

︸ ︷︷ ︸
Term II

+
1

κ

n∑

i=1

yib
⊤
i M̃v

ξϖ̃

︸ ︷︷ ︸
Term III

− 1

κ

n∑

i=1

s
(
b⊤
i M̃v

ξϖ̃
)

︸ ︷︷ ︸
Term IV

−1

2
ϖ̃⊤M̃v

ξQ
v
ξM̃v

ξϖ̃︸ ︷︷ ︸
Term V

−
(ν
2
+ aδ

) q∑

j=1

log
(
bδ +

ν

2
exp(vj)

)

︸ ︷︷ ︸
Term VI

, (D2.1)

where for notational convenience, we define M̃v
ξ :=

(
B⊤W̃B +Qv

ξ

)−1
.

Gradient associated to the penalty in a GAM

To obtain the gradient of log p̃(v|D), the partial derivatives of the latter

quantity with respect to vj , j = 1, . . . , q are required. The partial

derivative of Term I in (D2.1) can be obtained using Jacobi’s formula:

∂ log |B⊤W̃B +Qv
ξ |

∂vj

=
1

|B⊤W̃B +Qv
ξ |

∂

∂vj
|B⊤W̃B +Qv

ξ |

=
1

|B⊤W̃B +Qv
ξ |
Tr
(
adj(B⊤W̃B +Qv

ξ )
∂

∂vj
(B⊤W̃B +Qv

ξ )
)

=
1

|B⊤W̃B +Qv
ξ |
Tr
(
|B⊤W̃B +Qv

ξ | (B⊤W̃B +Qv
ξ )

−1

× ∂

∂vj
(B⊤W̃B +Qv

ξ )
)

= Tr
(
M̃v

ξ P̃vj

)
,



APPENDIX D 199

where P̃vj is a (symmetric) block diagonal matrix defined as:

P̃vj :=
∂

∂vj
(B⊤W̃B +Qv

ξ )

=

(
0p+1,p+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag(0, . . . , exp(vj), . . . , 0)⊗ P

)
.

Derivation of Term II with respect to vj simply equals a scalar:

∂

∂vj

(
ν +K − 1

2

)
q∑

j=1

vj =

(
ν +K − 1

2

)
.

Partial derivatives of Term III and Term IV are obtained using the

following result:

∂

∂vj
M̃v

ξ =
∂

∂vj

(
B⊤W̃B +Qv

ξ

)−1

= −
(
B⊤W̃B +Qv

ξ

)−1
P̃vj

(
B⊤W̃B +Qv

ξ

)−1

= −M̃v
ξ P̃vjM̃v

ξ .

Hence for Term III, using the property that the trace is invariant under

cyclic permutations:

∂

∂vj

(
1

κ

n∑

i=1

yib
⊤
i M̃v

ξϖ̃

)
=

∂

∂vj
Tr

(
1

κ

n∑

i=1

yib
⊤
i M̃v

ξϖ̃

)

=
∂

∂vj

(
1

κ

n∑

i=1

yiTr
(
b⊤
i M̃v

ξϖ̃
))

=
∂

∂vj

(
1

κ

n∑

i=1

yiTr
(
ϖ̃b⊤

i M̃v
ξ

))

=
1

κ

n∑

i=1

yi
∂

∂vj
Tr
(
ϖ̃b⊤

i M̃v
ξ

)

=
1

κ

n∑

i=1

yiTr

(
ϖ̃b⊤

i

∂

∂vj
M̃v

ξ

)

= − 1

κ

n∑

i=1

yiTr
(
ϖ̃b⊤

i M̃v
ξ P̃vjM̃v

ξ

)
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= − 1

κ

n∑

i=1

yiTr
(
b⊤
i M̃v

ξ P̃vjM̃v
ξϖ̃
)

= − 1

κ

n∑

i=1

yib
⊤
i M̃v

ξ P̃vjM̃v
ξϖ̃. (D2.2)

For Term IV we use the chain rule and obtain:

∂

∂vj

(
1

κ

n∑

i=1

s
(
b⊤
i M̃v

ξϖ̃
))

=
1

κ

n∑

i=1

s′
(
b⊤
i M̃v

ξϖ̃
) ∂

∂vj

(
b⊤
i M̃v

ξϖ̃
)

=
1

κ

n∑

i=1

s′
(
b⊤
i M̃v

ξϖ̃
) ∂

∂vj
Tr
(
b⊤
i M̃v

ξϖ̃
)

=
1

κ

n∑

i=1

s′
(
b⊤
i M̃v

ξϖ̃
) ∂

∂vj
Tr
(
ϖ̃b⊤

i M̃v
ξ

)

= − 1

κ

n∑

i=1

s′
(
b⊤
i M̃v

ξϖ̃
)
b⊤
i M̃v

ξ P̃vjM̃v
ξϖ̃.

The partial derivative of Term V is obtained as follows:

∂

∂vj

(
ϖ̃⊤M̃v

ξQ
v
ξM̃v

ξϖ̃
)

=
∂

∂vj
Tr
(
ϖ̃⊤M̃v

ξQ
v
ξM̃v

ξϖ̃
)

=
∂

∂vj
Tr
(
ϖ̃ϖ̃⊤M̃v

ξQ
v
ξM̃v

ξ

)

= Tr

(
ϖ̃ϖ̃⊤ ∂

∂vj

(
M̃v

ξQ
v
ξM̃v

ξ

))

= Tr

(
ϖ̃ϖ̃⊤

(
∂M̃v

ξ

∂vj
Qv

ξM̃v
ξ + M̃v

ξ

∂Qv
ξ

∂vj
M̃v

ξ + M̃v
ξQ

v
ξ

∂M̃v
ξ

∂vj

))

= Tr
(
ϖ̃ϖ̃⊤

(
− M̃v

ξ P̃vjM̃v
ξQ

v
ξM̃v

ξ + M̃v
ξ P̃vjM̃v

ξ

−M̃v
ξQ

v
ξM̃v

ξ P̃vjM̃v
ξ

))

= Tr
(
ϖ̃⊤

(
− M̃v

ξ P̃vjM̃v
ξQ

v
ξM̃v

ξ + M̃v
ξ P̃vjM̃v

ξ

−M̃v
ξQ

v
ξM̃v

ξ P̃vjM̃v
ξ

)
ϖ̃
)
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= −ϖ̃⊤M̃v
ξ P̃vjM̃v

ξQ
v
ξM̃v

ξϖ̃ − ϖ̃⊤M̃v
ξQ

v
ξM̃v

ξ P̃vjM̃v
ξϖ̃

+ϖ̃⊤M̃v
ξ P̃vjM̃v

ξϖ̃

= −ϖ̃⊤M̃v
ξ P̃vjM̃v

ξQ
v
ξM̃v

ξϖ̃ −
(
ϖ̃⊤M̃v

ξQ
v
ξM̃v

ξ P̃vjM̃v
ξϖ̃
)⊤

+ϖ̃⊤M̃v
ξ P̃vjM̃v

ξϖ̃

= −ϖ̃⊤M̃v
ξ P̃vjM̃v

ξQ
v
ξM̃v

ξϖ̃ − ϖ̃⊤M̃v
ξ P̃vjM̃v

ξQ
v
ξM̃v

ξϖ̃

+ϖ̃⊤M̃v
ξ P̃vjM̃v

ξϖ̃

= −2ϖ̃⊤M̃v
ξ P̃vjM̃v

ξQ
v
ξM̃v

ξϖ̃ + ϖ̃⊤M̃v
ξ P̃vjM̃v

ξϖ̃.

With regard to the derivative of Term VI we have:

∂

∂vj

q∑

j=1

log
(
bδ +

ν

2
exp(vj)

)
=

ν
2 exp(vj)

bδ +
ν
2 exp(vj)

=
1

1 + 2bδ
ν exp(vj)

.

For notational convenience we define Υ̃j
v := M̃v

ξ P̃vjM̃v
ξ . From all the

above intermediate results for Terms I-VI, the gradient ∇v log p̃(v|D)

has the following entries:

∂ log p̃(v|D)

∂vj

= −1

2
Tr
(
M̃v

ξ P̃vj

)

︸ ︷︷ ︸
Term VII

+

(
ν +K − 1

2

)
− 1

κ

n∑

i=1

yib
⊤
i Υ̃

j
vϖ̃

︸ ︷︷ ︸
Term VIII

+
1

κ

n∑

i=1

s′
(
b⊤
i M̃v

ξϖ̃
)
b⊤
i Υ̃

j
vϖ̃

︸ ︷︷ ︸
Term IX

+ ϖ̃⊤Υ̃j
vQ

v
ξM̃v

ξϖ̃︸ ︷︷ ︸
Term X

−1

2
ϖ̃⊤Υ̃j

vϖ̃︸ ︷︷ ︸
Term XI

−
(
ν
2 + aδ

)

1 + 2bδ
ν exp(vj)︸ ︷︷ ︸

Term XII

, j = 1, . . . , q.
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Hessian associated to the penalty in a GAM

Diagonal elements

First, we focus on the diagonal entries. The derivative of Term VII is:

∂

∂vj
Tr
(
(B⊤W̃B +Qv

ξ )
−1P̃vj

)
= Tr

(
∂

∂vj
(B⊤W̃B +Qv

ξ )
−1P̃vj

)

= Tr
(
−M̃v

ξ P̃vjM̃v
ξ P̃vj + M̃v

ξ P̃vj

)

= −Tr

((
M̃v

ξ P̃vj

)2
− M̃v

ξ P̃vj

)
.

Let us derive the intermediate result:

∂Υ̃j
v

∂vj
=

∂

∂vj
M̃v

ξ P̃vjM̃v
ξ

=

(
∂M̃v

ξ

∂vj
P̃vjM̃v

ξ + M̃v
ξ

∂P̃vj

∂vj
M̃v

ξ + M̃v
ξ P̃vj

∂M̃v
ξ

∂vj

)

=
(
−M̃v

ξ P̃vjM̃v
ξ P̃vjM̃v

ξ + M̃v
ξ P̃vjM̃v

ξ − M̃v
ξ P̃vjM̃v

ξ P̃vjM̃v
ξ

)

=

(
−2
(
M̃v

ξ P̃vj

)2
M̃v

ξ + Υ̃j
v

)
. (D2.3)

Partial differentiation of Term VIII yields:

∂

∂vj

(
1

κ

n∑

i=1

yib
⊤
i Υ̃

j
vϖ̃

)
=

∂

∂vj
Tr

(
1

κ

n∑

i=1

yib
⊤
i Υ̃

j
vϖ̃

)

=
∂

∂vj

(
1

κ

n∑

i=1

yiTr
(
b⊤
i Υ̃

j
vϖ̃
))

=
∂

∂vj

(
1

κ

n∑

i=1

yiTr
(
ϖ̃b⊤

i Υ̃
j
v

))

=
1

κ

n∑

i=1

yi
∂

∂vj
Tr
(
ϖ̃b⊤

i Υ̃
j
v

)

=
1

κ

n∑

i=1

yiTr

(
ϖ̃b⊤

i

(
∂Υ̃j

v

∂vj

))
,

and using intermediate result (D2.3), one obtains for Term VIII:
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∂

∂vj

(
1

κ

n∑

i=1

yib
⊤
i Υ̃

j
vϖ̃

)

= − 1

κ

n∑

i=1

yiTr

(
ϖ̃b⊤

i

(
2
(
M̃v

ξ P̃vj

)2
M̃v

ξ − Υ̃j
v

))

= − 1

κ

n∑

i=1

yiTr

(
b⊤
i

(
2
(
M̃v

ξ P̃vj

)2
M̃v

ξ − Υ̃j
v

)
ϖ̃

)

= − 1

κ

n∑

i=1

yib
⊤
i

(
2
(
M̃v

ξ P̃vj

)2
M̃v

ξ − Υ̃j
v

)
ϖ̃.

For Term IX, we have:

∂

∂vj

(
1

κ

n∑

i=1

s′
(
b⊤
i M̃v

ξϖ̃
)
b⊤
i Υ̃

j
vϖ̃

)

=
1

κ

n∑

i=1

(
s′′(b⊤

i M̃v
ξϖ̃)

∂

∂vj
Tr
(
b⊤
i M̃v

ξϖ̃
)(

b⊤
i Υ̃

j
vϖ̃
)

+s′(b⊤
i M̃v

ξϖ̃)
∂

∂vj
Tr
(
b⊤
i Υ̃

j
vϖ̃
))

.

Using (D2.2) and intermediate result (D2.3) we have for Term IX:

∂

∂vj

(
1

κ

n∑

i=1

s′
(
b⊤
i M̃v

ξϖ̃
)
b⊤
i Υ̃

j
vϖ̃

)

=
1

κ

n∑

i=1

(
s′′(b⊤

i M̃v
ξϖ̃)

(
−b⊤

i Υ̃
j
vϖ̃
)(

b⊤
i Υ̃

j
vϖ̃
)
+ s′(b⊤

i M̃v
ξϖ̃)b⊤

i

×
(
−2
(
M̃v

ξ P̃vj

)2
M̃v

ξ + Υ̃j
v

)
ϖ̃

)

= − 1

κ

n∑

i=1

(
s′(b⊤

i M̃v
ξϖ̃)b⊤

i

(
2
(
M̃v

ξ P̃vj

)2
M̃v

ξ − Υ̃j
v

)
ϖ̃

+s′′(b⊤
i M̃v

ξϖ̃)
(
b⊤
i Υ̃

j
vϖ̃
)2
)
.
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The partial derivative of Term X is obtained as follows:

∂

∂vj

(
ϖ̃⊤Υ̃j

vQ
v
ξM̃v

ξϖ̃
)

=
∂

∂vj
Tr
(
ϖ̃⊤Υ̃j

vQ
v
ξM̃v

ξϖ̃
)

=
∂

∂vj
Tr
(
ϖ̃ϖ̃⊤Υ̃j

vQ
v
ξM̃v

ξ

)

= Tr

(
ϖ̃ϖ̃⊤ ∂

∂vj

(
Υ̃j

vQ
v
ξM̃v

ξ

))

= Tr

(
ϖ̃ϖ̃⊤

(
∂Υ̃j

v

∂vj
Qv

ξM̃v
ξ + Υ̃j

v

∂Qv
ξ

∂vj
M̃v

ξ + Υ̃j
vQ

v
ξ

∂M̃v
ξ

∂vj

))

= Tr

(
ϖ̃ϖ̃⊤

((
− 2

(
M̃v

ξ P̃vj

)2
M̃v

ξ + Υ̃j
v

)
Qv

ξM̃v
ξ

+Υ̃j
vP̃vjM̃v

ξ − Υ̃j
vQ

v
ξ Υ̃

j
v

))

= Tr

(
ϖ̃⊤

(
− 2

(
M̃v

ξ P̃vj

)2
M̃v

ξQ
v
ξM̃v

ξ + Υ̃j
vQ

v
ξM̃v

ξ

+Υ̃j
vP̃vjM̃v

ξ − Υ̃j
vQ

v
ξ Υ̃

j
v

)
ϖ̃

)

= −2ϖ̃⊤
(
M̃v

ξ P̃vj

)2
M̃v

ξQ
v
ξM̃v

ξϖ̃ + ϖ̃⊤Υ̃j
v

(
Qv

ξ + P̃vj

)
M̃v

ξϖ̃

−ϖ̃⊤Υ̃j
vQ

v
ξ Υ̃

j
vϖ̃.

Partial differentiation of Term XI gives us:

∂

∂vj

(
ϖ̃⊤Υ̃j

vϖ̃
)

=
∂

∂vj
Tr
(
ϖ̃⊤Υ̃j

vϖ̃
)

=
∂
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(
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)
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(
ϖ̃ϖ̃⊤∂Υ̃

j
v
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)

= Tr

(
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(
−2
(
M̃v

ξ P̃vj

)2
M̃v

ξ + Υ̃j
v

))
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= Tr

(
ϖ̃⊤

(
−2
(
M̃v

ξ P̃vj

)2
M̃v

ξ + Υ̃j
v

)
ϖ̃

)

= −2ϖ̃⊤
(
M̃v

ξ P̃vj

)2
M̃v

ξϖ̃ + ϖ̃⊤Υ̃j
vϖ̃.

Finally derivation of Term XII is simply:

∂

∂vj

(
ν
2 + aδ

)
(
1 + 2bδ

ν exp(vj)

) =
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 .

Using the differentiation results for Terms VII-XII, the diagonal elements

of the Hessian of log p̃(v|D) are:

∂2 log p̃(v|D)

∂v2j

=
1

2
Tr

((
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+
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− 1
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i M̃v
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i M̃v
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)
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)2
M̃v

ξQ
v
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ξϖ̃

+ϖ̃⊤Υ̃j
v

(
Qv

ξ + P̃vj

)
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v
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−bδ
(
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ν

)
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)2 , j = 1, . . . , q.
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Off-diagonal elements

Note that for index s ̸= j we have for Term VII:

∂

∂vs
Tr
(
M̃v

ξ P̃vj

)
= Tr

(
∂M̃v

ξ

∂vs
P̃vj

)

= −Tr
(
M̃v

ξ P̃vsM̃v
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)
.

Define Υ̃s
v := M̃v

ξ P̃vsM̃v
ξ and consider the intermediate result:

∂Υ̃j
v

∂vs
=

∂
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ξ P̃vjM̃v
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ξ

)

= −
(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
. (D2.4)

Result (D2.4) can be used to obtain the differentiation of Term VIII:
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To derive Term IX, we also use result (D2.4):

∂
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Partial differentiation of Term X goes as follows:

∂

∂vs

(
ϖ̃⊤Υ̃j

vQ
v
ξM̃v

ξϖ̃
)

=
∂

∂vs
Tr
(
ϖ̃⊤Υ̃j

vQ
v
ξM̃v

ξϖ̃
)

=
∂

∂vs
Tr
(
ϖ̃ϖ̃⊤Υ̃j

vQ
v
ξM̃v

ξ

)

= Tr

(
ϖ̃ϖ̃⊤ ∂

∂vs

(
Υ̃j

vQ
v
ξM̃v

ξ

))

= Tr

(
ϖ̃ϖ̃⊤

(
∂Υ̃j

v

∂vs
Qv

ξM̃v
ξ + Υ̃j

v

∂Qv
ξ

∂vs
M̃v

ξ + Υ̃j
vQ

v
ξ

∂M̃v
ξ

∂vs

))

= Tr

(
ϖ̃ϖ̃⊤

(
−
(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
Qv

ξM̃v
ξ + Υ̃j

vP̃vsM̃v
ξ

−Υ̃j
vQ

v
ξM̃v

ξ P̃vsM̃v
ξ

))



208 APPENDIX D

= Tr
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Partial differentiation of Term XI gives us:
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Finally, the off-diagonal elements s = 1, . . . , q; j = 1, . . . , q and s ̸= j of

the Hessian of log p̃(v|D) are:
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